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Abstract: As the nations embark into the second decade of action for road safety, it is opportune 
that we critically review past mistakes and emphasize thrust areas to meet road safety targets. 
Road safety of vulnerable road users (VRUs) and hit-and-run road crashes are two areas with 
alarming trends in the past decade and necessitate concerted efforts. India, as the world leader 
in road traffic fatalities, is observing threatening numbers of VRUs and hit-and-run road crashes. 
The present study focuses on providing a solution to these correlated road safety issues by 
predicting the unknown striking vehicle type in case of hit-and-run road crashes involving 
motorized two-wheelers as the victim. Delhi, the capital of India, is the study area for the 
experiment. Predictive techniques such as supervised learning classification models are 
employed. Ensemble learning technique, such as Random Forest, has been found to perform 
best and have the maximum capability to predict the unknown striking vehicle type in hit-and-
run road crashes involving motorized two-wheelers. The study findings are helpful for traffic 
enforcement agencies and policymakers to strategize action and execute prevention plans to 
improve the overall road safety situation. 
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1. INTRODUCTION  1 
 2 
Transportation has been an enabler for human beings in many ways in improving the quality of 3 
life. However, the need for travel to accomplish daily activities has also negatively impacted 4 
human health. Road crashes are one of the prime contributors (IHME, 2017). The heavy burden 5 
of road crashes can be understood by the fact that approximately 1.3 million people lose their 6 
lives every year, and between 20 and 50 million more people are suffering from road crash-7 
related injuries of different severities, with many disabled for the rest of their lives (WHO, 8 
2018). 9 

Understanding the causal factors behind road crashes is vital in mitigating this mammoth 10 
global problem. However, one of the main impediments in determining the cause of road 11 
crashes is not having information about the offender’s vehicle or the striking vehicle in a 12 
particular road crash. Typically, the offender’s vehicle is considered as one that flees from the 13 
road site post committing the crash. These vehicles are commonly named ‘unknown’ vehicles 14 
while recording the crash scene details by the police. Further, the issue of hit-and-run crashes 15 
is prevalent in many parts of the world. For instance, in the USA, fatalities caused by hit-and-16 
run crashes increased by 13.7% from 2009 to 2011 (NHTSA, 2012). India, which has a dubious 17 
distinction of leading the world in road traffic fatalities (MoRTH, 2018), also has a significant 18 
share of hit-and-run crashes, approximately 15% (69,822) in 2018. In terms of fatalities caused 19 
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by hit-and-run (H&R) crashes, the trend is alarming (see Figure 1) and constituted around 19% 20 
(28,619) of total fatalities in 2018 (MoRTH, 2019). Further ahead, more than 22,000 persons 21 
suffered a grievous injury in hit-and-run crashes in 2017 alone (MoRTH, 2018), and a rising 22 
trend is also observed in recent years as per crash data (MoRTH, 2019). This is critical since 23 
approximately 35% of fatalities occur within 1-2 hours of crash occurrence (Roger P. Roess, 24 
2004). 25 

Road crashes ripple effects are evident in the nation’s economy and well-being. About 3-26 
5% of India’s gross domestic product (GDP) is lost yearly because of road crashes (World Bank, 27 
2020). Also, to achieve the global road safety target of a 50% reduction in fatalities, India will 28 
need an additional investment of USD 109 billion over the 2021-2030 decade (Bandyopadhyay 29 
et al., 2020). It is pertinent to point out the cost incurred concerning the hit-and-run crashes. As 30 
per MoRTH (2022) notification, in case of a hit-and-run crash, a compensation of Rs. 2 lacs is 31 
to be provided for death and Rs. 50,000 in case of grievously injured. Therefore, it is clear that 32 
hit-and-run crashes pose a tremendous economic burden to low and middle-income countries 33 
like India and necessitates an urgent response. 34 
 35 

 36 
Fig. 1. Hit-and-run crashes scenario in recent years in India 37 

 38 
The situation is aggravated further due to the unavailability of authentic or comprehensive 39 

crash data on offender vehicles in hit-and-run crashes in most jurisdictions. As a consequence, 40 
it becomes difficult to devise prevention strategies. 41 
 42 

Based on the above discussion, it is evident that hit-and-run crashes pose a significant 43 
challenge and threat to the road safety situation in India. Therefore, the objective of this work 44 
is to identify the unknown striking vehicle type in a hit-and-run crash; it can be really helpful 45 
in developing strategic countermeasures to overcome this issue. 46 

 47 
 48 



 

 
 

2. LITERATURE REVIEW 49 
 50 
2.1 Hit-and-run crashes 51 
 52 
Road traffic injuries and fatalities disproportionately impact low and middle-income countries 53 
(LMICs) like India (Dandona et al., 2020). To get insights into the underlying causal factors, 54 
the findings of a study commissioned by the World Bank in different states of India are 55 
important (World Bank, 2021). The study highlighted that (i) fatality post-crash is higher in 56 
low-income households than high-income households since most of them belong to the 57 
vulnerable road user group (pedestrians, MTWs, cyclists) and are involved in hit-and-run road 58 
crashes, (ii) low rates of insurance coverage (only one-third of the truck drivers in the study 59 
knew about third-party liability insurance) and in addition, lack of legal awareness among heavy 60 
vehicle (truck) drivers, due to this most truck drivers do not report the road crashes. 61 

Hit-and-run crashes are a common scene in many countries around the world, including 62 
developed countries. Many past studies have explored the area in several ways. For instance, 63 
few studies have identified the causal factors in hit-and-run crashes (Tay et al., 2009; MacLeod 64 
et al., 2012; Zhang et al., 2014). Others have tried to understand the offender driver’s decision 65 
to flee after the crash (Solnick and Hemenway, 1995; Tay et al., 2008; Kim et al., 2008). It is 66 
important to note that a reliable and comprehensive crash database is the primary requirement 67 
to perform these tasks. Low-and middle-income countries like India, where the crash reporting 68 
system is poor and which already suffer from having very few details (temporal, environment, 69 
vehicle, driver) about the road crash in the database. The possibility of achieving reliable results 70 
is meager and far-fetched. 71 

The existence of limited studies originating from India despite the growing share of hit-72 
and-run crashes is evidence of that. Recently, a study by Sivasankaran and Balasubramanian 73 
(2020), investigated the factors contributing to pedestrian hit-and-run crashes in India and found 74 
that seasonal (summer and winter), area type (urban area), and dark unlighted conditions 75 
increase the tendency of offender/ striking vehicle to flee from the road crash spot. However, 76 
the main issue in such hit-and-run crashes is that of not having knowledge of the striking 77 
vehicles, which are therefore reported as unknown vehicles in the crash data. Only a few studies 78 
(Jha et al., 2021) have recently explored this research area and have predicted missing 79 
information, such as unknown vehicles in a hit-and-run accident, using artificial intelligence-80 
based models. However, the prediction accuracy of the models used was very less. The present 81 
study work is an attempt to build upon and extend the existing knowledge in predicting the 82 
unknown vehicles in hit-and-run crashes by employing other recent techniques to further 83 
facilitate in improving the road safety situation. 84 
 85 
2.2 Prediction Models 86 
 87 
Broadly, there are a total of four types of machine learning models that are used to perform the 88 
prediction analysis. They are supervised learning, unsupervised learning, semi-supervised 89 
learning, and reinforcement learning (Kang and Jameson, 2018). In this study, as the output of 90 
the dataset (striking vehicle type) contains known and unknown striking vehicles so, the main 91 
aim of the present work is to predict the unknown striking vehicle type involved in the road 92 
crash using the available crash dataset. Hence, a supervised ML model is appropriate, but 93 
unsupervised models can also be applied to cluster the crash data and then apply any supervised 94 
ML model for the predictions.  95 

 96 
 97 



 

 
 

Some of the supervised ML models which can be applied to the crash data are mentioned below. 98 
 99 

1. Logistic regression: - It works like the Linear regression model, but the outcome of the 100 
linear regression model is continuous. However, in logistic regression, the output is 101 
categorical (Wright, 1995). This is a classification ML model used to predict the class 102 
of the unknown record. It can classify the instance into two or more two classes, also 103 
named a multiclass classification problem. It works based on Maximum likelihood 104 
estimation (Czepiel, 2002) and uses Log Loss as the Loss function to learn during 105 
training. 106 

2. Linear discriminant analysis (LDA): - This is a supervised machine learning algorithm 107 
that is widely used in the dimensionality reduction of the data (Tang et al., 2005). The 108 
main aim of this algorithm is to reduce the within-class scatter, i.e., the similarity in the 109 
features for one class is high, and the other task is to increase the between-class scatter, 110 
which means the similarity in between the two classes is as low as possible (Izenman, 111 
2008). It separates the data points of different classes and projects them on the 112 
perpendicular plane (e.g., if we are working on three-dimensional data, then projecting 113 
this data on a plane on which we find the maximum separation in the between-class 114 
scatter), leading to dimension reduction. And on top of it, we can apply any machine 115 
learning algorithms to the transformed data. 116 

3. K-nearest neighbor (KNN): - It is also known as a lazy learning algorithm, which means 117 
it actually didn’t learn anything and also didn’t require any kind of training; it just 118 
calculates the euclidean distance from the given record with all the records present in 119 
the data (Cunningham and Delany, 2021). After finding the distances between all the 120 
records with the given one, The algorithm then selects the K-nearest data points, where 121 
K is a user-defined constant, and assigns the query point to the class that has the most 122 
representatives within the nearest neighbors (for example, car, car, truck, truck, truck in 123 
this K = 5 and returns ‘car’ as output for that instance) if its a classification problem. 124 

The KNN algorithm is also used in imputing the missing values, as done by Murti 125 
et al. (2019); this study examines the performance of an imputation method using the 126 
KNN algorithm to handle missing data. The results show that the accuracy of the 127 
imputed dataset is similar to that of a complete dataset. 128 

4. Decision Tree: This is also known as CART (classification and regression technique), 129 
i.e., used for both regression and classification tasks (Crawford, 1989). The basic 130 
intuition behind this algorithm is that it splits the decision in terms of ‘yes’ or ‘no’ and 131 
divides the data into subsets; this process is done on every node, and the leaf node of 132 
the tree is the outcome that we are looking for. It uses the Gini index and entropy to 133 
select the splitting value at every node (Charbuty and Abdulazeez, 2021). Gini is the 134 
measure of the impurity of the data at that node, and entropy is the measure of the 135 
variability of the data at that node. Hence, if we are selecting Gini, it must be the 136 
minimum, and if we are using the entropy, then the difference between the entropy 137 
before and after splitting has to be maximum. 138 

5. Support vector machine (SVM): - It is also a supervised machine learning algorithm 139 
whose main aim is to draw a hyperplane in between the two classes of the given data 140 
(Wang, 2005) so that it acts as the decision boundary for the upcoming data whether it 141 
lies in which side of the hyperplane. This can also be used in regression tasks, regression 142 
tasks include building a residual insensitive tube for regressing the outcomes, but here 143 
in the present study, we need to classify the categories. It uses several kernels which 144 
transform the data to a higher dimension as needed for building the hyperplane. Some 145 



 

 
 

of them are ‘linear,’ ‘rbf’ radial basis function (used to increase the dimension of the 146 
data), ‘polynomial’ (Suthaharan, 2016), etc. 147 

6. Naive Bayes (NB):- Naive Bayes is a machine learning algorithm for classification 148 
problems, which is based on the Bayes theorem. It states that the probability of an event 149 
occurring is equal to the product of the probability of the event given some evidence 150 
and the prior probability of the event (Zhang, 2004). Naive Bayes makes use of this 151 
theorem to classify data into different categories. It assumes that all features are 152 
independent of each other, which makes it a simple and fast algorithm. Naive Bayes has 153 
been used in many applications, such as spam filtering, text classification, and medical 154 
diagnosis. It is also widely used in natural languages processing tasks such as sentiment 155 
analysis and document categorization. 156 

7. Random Forest:- Random forest is a powerful machine-learning model that is used for 157 
both classification and regression tasks. It is an ensemble method that combines multiple 158 
decision trees to create a more accurate and robust model. The random forest algorithm 159 
works by randomly selecting a subset of features from the training dataset and then 160 
building multiple decision trees using those features. Each tree is then used to make 161 
predictions on the test data, and the results are combined to form a single prediction 162 
(Breiman, 2001). Random forests are known for their accuracy, robustness, and 163 
scalability, making them a popular choice for many machine-learning tasks. 164 

 165 
In the past, various machine learning models such as logistic regression, support vector 166 

classifier, KNN, Naïve Bayes, and decision trees have been used for different purposes. For 167 
example, (Rezapour et al., 2020) employed logistic regression and a decision tree to analyze 168 
the injury severity of motorized two-wheeler (MTW) at-fault crashes. (Jamal et al., 2021) 169 
compared the eXtreme Gradient Boosting (XGBoost) model to traditional machine learning 170 
algorithms for crash injury severity analysis using data from 13,546 motor vehicle collisions in 171 
Riyadh, KSA. Results indicated that XGBoost outperformed other models in terms of predictive 172 
performance and individual class accuracies. Several studies (Iranitalab and Khattak, 2017), 173 
(Zhang et al., 2018), (Wahab and Jiang, 2019), (Komol et al., 2021) also conducted similar 174 
studies to predict crash severity using statistical and machine learning methods for MTWs and 175 
vulnerable road users, respectively. These studies have demonstrated the potential of machine 176 
learning models when applied to crash data. 177 

As per the authors’ best knowledge, only one study has tried to predict the unknown 178 
striking vehicle type in hit-and-run cases (Jha et al., 2021). The authors compared the above 179 
models to predict the unknown striking vehicles in hit-and-run cases. Based on how well it 180 
worked in their case, the Support vector classifier is the best because it works best with space 181 
data. Therefore, the present study attempts to extend the existing literature by using robust 182 
machine learning models and to bridge the gap by identifying the unknown striking vehicle 183 
type for hit-and-run crashes involving one of the vulnerable road users (MTWs). 184 
 185 
 186 
3. METHODOLOGY 187 
 188 
The main aim of this study is to predict the striking vehicle type in the hit-and-run crash, which 189 
is reported as ‘unknown’ in the crash data. This is done by using several classification machine 190 
learning algorithms, as seen in Figure 2. Here the classification problem is not inclined towards 191 
either of the situations like we can bear a false negative (e.g., cancer patient prediction) or a 192 
false positive (e.g., criminal prediction); hence the present study is more towards the accuracy 193 
of the model, not towards the recall and precision. 194 



 

 
 

 195 

 196 
Fig. 2. Methodology Flow for the Study 197 

 198 
The steps involved in the development of the model are as follows- 199 
 200 

• At first, a feature selection process, i.e., selecting the most reasonable features 201 
responsible for output, is performed. Initial data had a set of 12 features; they are MTW 202 
Crash Severity, Day, Time of the crash, Season, Road type by geometry, Road location 203 
by type of neighborhood, Median Presence, Collision type, MTW by Engine Capacity, 204 
Pillion Passenger Presence, MTW Rider Gender, and MTW Rider Age. Out of 327 205 
instances, 120 are unknown, i.e., a prediction model is required for these instances. 206 
Hence a total of 207 cases are left for training and testing the proposed model. 207 

• After doing the feature selection process, out of 12 features, 11 are categorical features, 208 
which can not be used directly while building the model. Linear discriminant analysis 209 
is the best-suited technique for dimension reduction if we are dealing with the 210 
categorical output variable, and finally, the model building and validation part is carried 211 
out, as seen in Figure 2. 212 

• On these features, we have applied one hot encoding, which converts these 11 features 213 
into 38 feature spaces, and we have a total of 207 instances for model building. One hot 214 
encoding makes the data very sparse, and predictions on the sparse data set are not easier 215 
for many machine learning algorithms (except SVM); hence we need to reduce the 216 
dimension of the dataset. 217 

• For dimensionality reduction, we applied LDA, which is very useful when we have 218 
categorical outputs. It is a supervised algorithm that will help us in further model 219 
building for prediction. After applying LDA, the feature map is reduced to six, and cases 220 
are the same as before, i.e., 207. 221 

• After the LDA, we applied six ML models: Decision tree, SVC, Random Forest 222 
classifier, Naive Bayes, KNN, and Logistic regression. These models are being 223 
compared with the help of a cross-validation algorithm. 224 



 

 
 

• Finally, the validation of these machine learning models is carried out using 10-fold, 5-225 
fold, and 4-fold cross-validation, as the crash data set is limited, and seven classes are 226 
to be predicted, so it is better to check the model accuracy using various cross-227 
validations. 228 

 229 
3.1 Dimensionality reduction using linear discriminant analysis (LDA) 230 
 231 
The curse of dimensionality is a phenomenon that occurs when the number of dimensions in a 232 
dataset increases, leading to an exponential increase in the amount of data needed to represent 233 
the data accurately. This phenomenon has been studied extensively in the research literature by 234 
Bellman and Kalaba (1959); this paper showed that as the number of dimensions increases, it 235 
becomes increasingly difficult to accurately represent the data due to the large amount of data 236 
needed. Furthermore, they have demonstrated that certain techniques, such as principal 237 
component analysis (PCA), can be used to reduce the dimensionality of a dataset and thus 238 
reduce the amount of data needed for accurate representation (Bellman and Kalaba, 1959). 239 

Dimensionality reduction is a process of reducing the number of features or variables in 240 
a dataset while preserving the most important information. It is an important step in data pre-241 
processing and can be used to reduce the complexity of a dataset, improve the accuracy of 242 
machine learning models, and reduce the time required for training (Van Der Maaten et al., 243 
2009). Linear Discriminant Analysis (LDA) is one of the most popular techniques for 244 
dimensionality reduction if we are working with a classification problem. 245 
 246 
3.2 Cross Validation 247 
 248 
After reducing the dimension of the crash data, several machine learning models are developed 249 
and compared to their generalization by cross-validation. If we are dealing with biased data, 250 
then it is difficult for a model to perform well on testing data. A good model must not overtrain 251 
on training sample because it may lead to overfitting. Hence, we need a generalized model. A 252 
K-fold cross-validation approach is applied to all the modes while learning from training and 253 
finding the test set. Cross-validation is a technique that is used to validate the built model, 254 
whether it is generalized or not (Browne, 2000). This is done by splitting the dataset into several 255 
folds, and we used one fold at a time for testing and all the remaining one for training. This 256 
process tests the model to determine whether it performs well on these several operations. For 257 
example, if we are talking about the 10-fold cross-validation, then it means that we have folded 258 
the crash data in 10 folds, and out of them, 9 are used for training, and one is for testing. This 259 
process is done 10 times because we have 10 folds, i.e., every fold is used as testing data once. 260 

The ‘K’ in K-fold cross-validation stands for the number of folds or partitions that the 261 
data is divided into (Anguita et al., 2012). K is typically an integer value greater than 2. In the 262 
present study, we have used 10-Fold, 5-Fold, and 4-fold cross-validation algorithms. Among 263 
these algorithms, 5-fold has varied advantages over others. For instance- 264 
 265 

• 5-fold cross-validation is less prone to overfitting than 10-fold cross-validation since it 266 
uses a smaller portion of the data for training and testing. 267 

• 5-fold cross-validation can provide more accurate results than 10-fold cross-validation 268 
since it uses a larger portion of the data for training and testing by ensuring that each 269 
fold contains an equal representation of all classes in the dataset; hence the biasedness 270 
of the model is reduced. 271 
 272 



 

 
 

Further ahead, accuracies for all the operation is noted, and the overall mean of these accuracies 273 
can be treated as the accuracy of the model, and we can also get the approximate standard 274 
deviation of the accuracy from the noted accuracies (Maglogiannis, 2007). Accuracy is 275 
calculated with the help of a formula for the categorical output, as mentioned below. This 276 
process is useful to reduce bias and variance in the model; in other words, overfitting and 277 
underfitting are addressed by this validation test. Here, true positive is denoted as TP, true 278 
negative as TN, false positive as FP, and false negative as FN. 279 
 280 

Accuracy = 
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
          (1) 281 

 282 
 283 

4. STUDY AREA AND ROAD CRASH DATA 284 
 285 
4.1 Study area 286 
 287 
The capital and megacity of India, i.e., Delhi, was selected based on the crash trends in recent 288 
years. Among the million-plus cities (in terms of population), Delhi leads in road traffic 289 
fatalities (MoRTH, 2015, 2016, 2017, 2018, 2019). Further, the trend in hit-and-run road 290 
crashes in Delhi in recent years is also worrisome (see Figure 3), being a highly urbanized city. 291 

The safety record of MTWs, which dominate traffic streams in Delhi, with more than 292 
60% share (DTP, 2018), is also a concern. As per crash statistics, MTW users were victims in 293 
1 of every 3 deaths or injuries (DTP, 2018). Further, Delhi traffic police also practice a rationale 294 
approach wherein they identify the accident-prone zones every year for each vulnerable road 295 
user (pedestrian, MTWs, cyclists) based on the following criterion: (i) 3 or more fatal crashes 296 
within the circle of diameter of 500 meters or (ii) 10 or more total crashes in the same region 297 
or location. 298 

 299 
Fig. 3. Hit-and-run crashes scenario in the study area Delhi 300 

 301 
For the present study, based on the pre-defined criteria, they have identified the crash-302 

prone zones for the MTWs for a period of 3 years (i.e., 2016 - 2018), and from which a total of 303 
327 crash first information reports (FIRs) from the MTW accident-prone zones are retrieved 304 
and examined in this study. 305 



 

 
 

4.2 Road Crash Data Description 306 
 307 
Delhi traffic police record the road crash data in the first information reports (FIRs). Crash FIR 308 
data fields provide information about the crash date, day, time, location, a brief description of 309 
the crash, and so on. The inputs for data fields are obtained from the police investigating officer, 310 
crash victim, offender vehicle driver, pillion passenger, if any, with the victim, or eyewitness. 311 
From the road crash FIRs for a study period (2016-2018), the following variables are retrieved 312 
from 327 road crash FIRs involving MTWs: 313 

a. Temporal information: Month, day, and time of road accident 314 
b. Roadway information: Type of road geometry, type of neighbourhood, median presence 315 
c. Crash-specific information: Striking vehicle type, collision type, hit-and-run status, the 316 

severity of crash (fatal, non-fatal) 317 
d. Road user information: Victim (MTW rider) gender, age, the pillion passenger presence 318 

 319 

5. RESULTS AND DISCUSSION 320 
 321 
5.1 Road crash pattern in MTW accident-prone zones 322 
 323 
Road Crash Severity- From 2016 to 2018, there were 327 crashes in MTW accident-prone 324 
zones in Delhi, which include 111 (33.94%) fatal and 216 (66.06%) non-fatal MTW crashes. It 325 
is evident from Figure 4 that a constant trend exists in MTWs fatalities. In terms of hit-and-run 326 
crashes, the year 2016 (56, 42%) had the maximum number of hit-and-run crashes involving 327 
MTWs. Further, 21 (55%) of fatalities for the year 2016 were reported in hit-and-run crashes. 328 
This shows the menace of hit-and-run crashes in the case of vulnerable road users like MTWs. 329 
 330 

 331 
Fig. 4. Severity of crashes in MTW Crash Prone Zones 332 

 333 
Temporal Trend in MTW crashes- Figure 5 shows the number of MTW crashes by the time 334 
period in a day. It is evident that the number of MTW crashes peaked during the night hours (9 335 
pm-12 am) and was lowest during the post-midnight (3 am to 6 am) and early morning (6 am 336 
to 9 am) hours when the level of MTW traffic is likely to be lower. In terms of hit-and-run 337 
crashes, night-time is dangerous for MTWs, especially from (9 pm-12 am) and (12 am-3 am), 338 



 

 
 

and constituted about 61 MTW crashes, i.e., 50% of total hit-and-run crashes. Moreover, the 339 
data shows that most hit-and-run crashes involving MTWs at night were fatal. 340 
 341 

 342 
Fig. 5. Distribution of MTW hit-and-run crashes with respect to time 343 

 344 
Spatial Trend in MTW crashes- Figure 6 shows the distribution of MTW crashes based on 345 
location in urban areas. Based on crash location, 128 (39.14%) of total MTW crashes occurred 346 
on flyovers which are the most prone locations for MTW crashes. Urban mid-blocks were the 347 
second most prone location for MTW crashes, with 94 (28.75%), followed by signalized  348 

Fig. 6. Spatial distribution of MTW road crashes 349 
 350 
intersections with 87 (26.61%) MTW crashes. In terms of hit-and-run crashes, where the 351 
striking vehicle is unknown, flyovers (54, 45%) dominate, followed by urban midblock (36, 352 
30%) and signalized intersections (23, 19.2%), respectively. 353 
 354 



 

 
 

Striking Vehicles in MTW Road crashes- Figure 7 shows the distribution of MTW crashes 355 
based on the striking or impacting vehicle. Based on the type of striking vehicle in MTW 356 
crashes, cars are the most reported and accounted for 85 (26%), followed by the truck with 36 357 
(11%). A significant proportion of LMV (29, 9%) was also involved as the striking/ impacting 358 
vehicle. Most importantly, hit-and-run crashes (120, 36.7%) dominate the MTW crashes; these 359 
are the crashes in which the striking vehicle is unknown. 360 

 361 
Fig. 7. Share of striking vehicle by type in MTW road crashes 362 

 363 
5.2 Selection of Supervised Classification Model 364 
 365 
The results after building several machine-learning models can be seen in Table 1. The cross-366 
validation of these models is carried out using 10-fold, 5-fold, 4-fold cross-validation while 367 
doing the validation using 10-fold, i.e., 90% of data is used for training, and 10% for testing is 368 
giving us overfitted results because here we have a small dataset with 7 classes to predict so 369 
while splitting the data in such a ration may lead to biased training sample. Hence, a balanced 370 
splitting is necessary, so using 5-fold validation, i.e., 80-20 splitting of data, addresses the 371 
overfitting and also reduces the deviation of accuracy in all the operations carried out during 372 
the cross-validation. 373 

Based on the prediction accuracy and standard deviation, we can infer that the decision 374 
tree has poor results as compared to the remaining models because, in most cases, decision trees 375 
overfit on the training set and lead to poor performance on the testing data, so an ensemble 376 
technique (i.e., a random forest) which is a combination of several decision trees; it is always a 377 
better option when compared with the decision tree because the predictions from multiple 378 
decision trees, i.e., multiple machine learning models and getting a combined outcome of all of 379 
them leads to a generalization of the model. Further, Naive Bayes only uses past events to 380 
predict the future, and there can be the case when previously some of the events never occurred; 381 
hence this algorithm gives so much accuracy deviation. And in the case of KNN, it does not 382 
give importance to any feature; it simply calculates the distance between the instances and 383 
returns the nearest one and not giving better results; hence it is also not able to generate a good 384 
relationship with the dependent and independent variables. 385 

The remaining models show accuracy within a range of 51-56%, with the highest being 386 
of Logistic regressor (55.76%) and next random forest (54.55%), but it can also be noted that 387 
the standard deviation in the accuracies while doing cross-validation is minimum in the random 388 
forest which states that this model is giving us consistent results in all the validation operation, 389 



 

 
 

i.e., we can rely on these outcomes as compared with the other. Therefore, based on the accuracy 390 
and standard deviation of the models, the Random forest model can be selected as the best-fit 391 
model because it has the least standard deviation in accuracy, which means it is the most 392 
consistent model among all. Hence we are selecting the Random forest for further predictions. 393 
 394 

Table 1. Cross validation with 5 Folds : 80% for training and 20% for testing 395 
S.No. Model Prediction 

Accuracy (%) 
Standard Deviation 

1 Decision Tree 41.21 7.32 
2 SVC 52.73 4.54 
3 Naive-Bayes 51.52 9.19 
4 Random Forest 54.55 2.71 
5 Logistic Regression 55.76 4.11 
6 KNN 41.82 3.53 

 396 
5.3 Predicting Unknown Striking Vehicle Type in the Hit-and-run Crashes 397 
 398 
Figure 8 shows the predicted results; clearly, it exhibits that in the hit-and-run crashes (120, 399 
36.7%) involving MTWs as the victim, car drivers had the major share as striking/ offending 400 
vehicles (55, 46%) followed by trucks (38, 32%). 401 

Fig. 8. Predicted Striking vehicle type 402 
 403 

For hit-and-run road crashes based on the time period of the day (see Figure 9), at night 404 
time (9 pm-12 am) which was found most dangerous, car drivers had the major share, followed 405 
by truck drivers. The trend was the opposite during the midnight (12 am- 3 am) period, where 406 
the truck drivers had a major share in hit-and-run crashes involving MTWs as the victim. These 407 
findings necessitate urgent tactical decisions (enforcement, education, medical care) based on 408 
the critical time period identified for hit-and-run crashes involving MTWs. 409 

Similarly, for hit-and-run crashes based on urban location (see Figure 10), flyovers which 410 
had the maximum hit and- run crashes involving MTWs, car drivers had the major share in hit-411 
and-run crashes, followed by truck and light motor vehicles (LMV). On midblock, surprisingly, 412 
truck drivers had the major proportion in hit-and-run crashes, followed by cars and buses. This 413 
is critical information and necessitates enforcement as well as engineering intervention. On 414 
signalized intersections, cars and trucks were the prime offending/ striking vehicle in hit-and-415 
run crashes involving MTWs as the victim. Overall, it was found that car and truck drivers had 416 



 

 
 

the major share in hit-and-run crashes involving MTWs therefore, enforcement drives can be 417 
planned accordingly. 418 
 419 
 420 

 421 
Fig. 9. Predicted striking vehicle type based on time interval 422 

 423 
 424 
 425 

 426 
Fig. 10. Predicted striking vehicle type based on urban locations 427 

 428 
5.4 Discussion 429 
 430 
If we look at the maximum accuracy of the machine learning models built in (Jha et al., 2021), 431 
we see the following: CART (decision tree) got 26% in Amritsar on test data, but we got 41.21% 432 
in Delhi, which is much better. This shows that there is a high chance of overfitting in their 433 



 

 
 

case, since they only had 263 training and testing samples to build and tune the model, and the 434 
decision tree is very prone to overfitting if it is not properly tuned due to the high dimensionality 435 
of the data. Then, in every other situation, the support vector machine got the highest accuracy, 436 
which was 45% in Ludhiana, 38% in Bhopal, 37% in Vizag, and 44% in Agra, as done by Jha 437 
et al. (2021). In the present study, using the support vector classifier, we got 52.73% accuracy 438 
in Delhi, which was better than all of the above. In addition to their machine learning models, 439 
we’ve also made a random forest classifier, which has the benefits we’ve already talked about. 440 
So, by using this model, we got an accuracy of 54.55%, which was higher than that of the 441 
support vector classifier and gave consistent results when cross-validated. So, the best way to 442 
make predictions is to use a random forest, as shown in the present work. 443 

Grade-separated intersections (flyovers) had the maximum share in MTW crashes in 444 
Delhi as per crash data. In this respect, the study by (Gupta et al., 2010) provides interesting 445 
insights based on the comparison of the mean speed of vehicles post-construction of the AIIMS 446 
flyover in Delhi. They found that the speed of vehicles increased by 21.5%, 22.6%, 15%, and 447 
31.6%, respectively, for heavy vehicles, cars, three-wheelers, and motorized two-wheelers, 448 
respectively. This underlines the fact that vehicles, including MTWs, tend to overspeed on 449 
grade-separated intersections (flyovers), which increases not only the chance of crashes but also 450 
the severity since they interact with large vehicles. Another important point is that typically, 451 
heavy vehicles are allowed in the night, and they are assumed to be loaded; thus, the driving 452 
maneuver of heavy vehicles is different at up/downgrades of the flyover; since this information 453 
is missing from the crash data, it should be looked in the future studies. 454 

Further, the spatial trend of MTW crashes revealed that midblock is the second most 455 
accident-prone location for MTWs, followed by signalized intersections. On urban midblock 456 
and intersections, there is a widespread belief that MTWs are more difficult to detect in traffic 457 
than any other motorized vehicle due to conspicuity issues. Earlier studies (Haque et al., 2009; 458 
Hurt et al., 1981; Mannering and Grodsky, 1995) of individual collisions involving MTWs, had 459 
indicated that drivers who violate MTW right-of-way often claim not to have seen them before 460 
the collision (“looked but failed to see”). In this regard, (Tiwari et al., 1998) performed conflict 461 
analysis for the prediction of fatal crash locations in mixed traffic streams and suggested 462 
segregation and traffic calming techniques development with special reference to motorized 463 
two-wheelers. 464 

Similarly, special treatment at intersections is given to MTWs in some parts of the world 465 
to facilitate their clearance from the intersection quickly and reduce delays to other vehicles. In 466 
Taiwan, motorcycles are allowed to store behind the stop line at a few intersections (Lee, 2008). 467 
In Chennai, India, the study by Asaithambi et al. (2015) suggested that for MTW-dominated 468 
traffic (70% MTWs) at signalized intersections, the discharge rates can be inherently increased 469 
(less delays) with the provision of exclusive stopping space for motorized (ESSM) two-470 
wheelers near the stop line. 471 

 472 
 473 
6. CONCLUSION AND RECOMMENDATIONS 474 
 475 
Road crashes are endangering the lives of millions worldwide, especially road users in low and 476 
middle-income countries like India. The socio-economic cost of road crashes is also immense; 477 
unfortunately, vulnerable road users like MTWs, etc., bear the brunt of this. Another neglected 478 
issue is that of hit-and-run crashes, wherein no accountability can be fixed between participating 479 
vehicles since the information on the offender’s vehicle or a striking vehicle is unknown in the 480 
crash data. 481 



 

 
 

The present study focuses on identifying the unknown striking vehicle type in hit-and-482 
run crashes involving MTWs so that prevention strategies can be developed accordingly. The 483 
work is carried out by first identifying the most important features from the road crash dataset, 484 
followed by the dimensionality reduction of the data. After this, different supervised learning 485 
models (logistic regression, support vector classifier, KNN, decision tree, Naive-Bayes, random 486 
forest) are applied for the prediction of the striking vehicles. The validation of these models 487 
was carried out using the K-fold cross-validation algorithm. In this study, the ensemble machine 488 
learning (Random forest) model best predicted the unknown striking vehicle type, among other 489 
models. 490 

Based on the prediction of the striking vehicle type in hit-and-run crashes involving 491 
MTWs as the victim, it was found that car and truck drivers had a major share in the hit-and-492 
run crashes. Further, for hit-and-run crashes based on the time period of the day, night time (9 493 
pm-12 am) was found most dangerous. The model predicted car drivers as the striking/offender 494 
vehicle in a significant proportion of night-time hit-and-run crashes, followed by truck drivers. 495 
The trend was the opposite during the midnight (12 am- 3 am) period, where the truck drivers 496 
had a major share in hit-and-run crashes. Further ahead, for hit-and-run crashes based on urban 497 
locations, flyovers had the maximum number of hit-and-run crashes involving MTWs as the 498 
victim. It was found that car drivers had the major share in hit-and-run crashes on flyovers, 499 
followed by truck and light motor vehicles (LMV). On midblock, interestingly, truck drivers 500 
had the major proportion in hit-and-run crashes, followed by cars and buses. This necessitates 501 
for segregation of MTWs from heavy vehicle traffic on urban roads. Further on, signalized 502 
intersections, cars, and trucks dominated as the offending/striking vehicle in the hit-and-run 503 
crashes involving MTWs as the victim. 504 
 505 
Recommendations based on study findings: 506 
 507 

• Special enforcement drives should be conducted during night-time, especially from 9 508 
pm- 3 am in MTW accident-prone zones 509 

• Additional allocation of medical ambulances in the MTW accident-prone zones during 510 
the critical night-time for necessary post-crash care to victims 511 

• Training and awareness programs for car and heavy vehicle drivers emphasizing 512 
responsible driving during night-time and the importance of golden hour in case of road 513 
crashes and how it can reduce the fatality risk 514 

• Sensitization of road users about the good samaritan laws and how it protects them when 515 
reporting about the road crash victim 516 

• Use of bright/reflective clothing for MTW users, especially during the night, to improve 517 
their visibility to other road users 518 

• Reduction of posted speed limits on grade-separated intersections (flyovers) for 519 
motorized vehicles to reduce the severity of road crashes for MTWs 520 

 521 
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