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Abstract: Under microscopic traffic simulation, traffic assignment is the result of multiple 

travelers concurrently finding their own best path from their origin to their destination paths. 

This can be considered a game-theoretic problem where the players decide which path to take, 

with costs assigned to each choice. An objective function derived from Wardrop’s Principle 

can be used to direct the choices of the travelers, converting the game-theoretic problem into 

an optimization problem. This study attempts to perform traffic assignment using greedy 

algorithm with backtracking by optimizing the individual decisions of each travelers. The road 

network used is a 3-route network with one entry and exit node, using LocalSIM as the traffic 

simulator.A benchmarking methodology was introduced to measure the performance of the 

greedy algorithm to the global optimal solution. For small number of vehicles, the distribution 

of the discrepancies among various initial conditions are slowly increasing. 
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1. INTRODUCTION 

 

According to a recent study by Japan International Cooperation Agency (JICA), the 

Philippines loses P 3.5 Billion per day due to traffic congestion in Metro Manila. This amount 

went higher from a National Economic Development Authority (NEDA) report, citing daily 

loss of P 2.4 Billion in 2014 (CNN Philippines, 2018). 

 Long-term solutions for traffic would include expansion of current mass transport 

infrastructures like the Metro Rail Transit (MRT) and Light Rail Transit (LRT), exploration of 

additional infrastructures as well as mass transport options like Bus Rapid Transit (BRT). 

However as these take large amount of time and money, one can look at shorter-term 

solutions like implementing various traffic policies. In that case, using traffic simulation helps 

in assessing the impact of these various policies when conducting a dry-run would not be 

feasible.  

 One of the key components to effective transport planning is Travel Forecasting. This 

process aims to estimate the future travel demand for certain transportation systems. A four-

step model was developed in the late 1950’s as a means to perform travel forecasting. Prior to 

travel forecasting, forecasts about population (demographic and socio-economic factors) and 

land use are generated first. After that, the modeler goes into the actual four-step model; trip 

generation, trip distribution, mode choice and traffic assignment (Beimborn, 1995). 

 Most of the traditional traffic assignment methods are done macroscopically, by 

considering only the demand estimate for each origin-destination pair and ignoring the minor 

details about the individual travelers and their interactions (lane changing, homogeneity or 

heterogeneity of vehicles, driver behavior or preferences, etc.). An alternative to this is to 

consider traffic demand as a sequence of individual travelers, each with their own behavior. 

Hence, one can look at microscopic traffic models. As traffic assignment is concerned with 
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how the demand on a given origin-destination (O-D) pair is split into various routes, one can 

look at this as considering the aggregate route choices of each traveller on that given O-D pair. 

In a sense, this is the extreme version of incremental traffic assignment where each individual 

traveler is the increment. From a game-theoretic standpoint, this means each individual 

traveler on a given O-D pair picks their own strategy (route taken) with experienced travel 

time as the payoff. 

 One feature of microscopic traffic model is that the existing models are focused on 

driver-driver interactions as well as driver-road interactions (Matthew, 2014). In this case, 

Agent-Based Modeling (ABM) was employed since it is easier to define the rules of 

interaction rather than determining the equations that govern these interactions. Taking these 

intricacies into consideration might result to a more realistic traffic simulation. 

 

 

2. PRELIMINARIES 

 

2.1 Transport Network as Graphs 

 

Assuming that counterflows are not permitted, a Transport Network can be represented by a 

directed graph 𝐺 = (𝑉, 𝐸) with a set of nodes 𝑉 and a set of directed edges 𝐸 (called links) 

connecting any 2 distinct nodes (𝑣𝑖, 𝑣𝑗 ∈ 𝑉 ; 𝑖 ≠ 𝑗) (Lehman et al., 2010). On actual road 

networks, nodes can represent junctions while edges can represent roads. For simplicity, it is 

assumed that every node (𝑣) in the network is connected to at least one other node in a 

network. 

 A source node is a node in the graph (denoted by 𝑣𝑜 ∈ 𝑉 ) where every edge 

connected to it are outgoing edges while a sink node is a node in the graph (denoted by 

𝑣𝑓 ∈ 𝑉) where every edge connected to it are incoming edges (Lehman et al., 2010). In 

transport networks, vehicles enter the network through source nodes (referred to as origin) 

while vehicles exit the network through sink nodes (referred to as destination). A transport 

network can have any number of source node or sink nodes. However, without loss of 

generality, only traffic networks with singular source and sink nodes will be considered. 

 A route can be defined as a sequence of connected directed edges 𝑎′ = {𝑒1, 𝑒2, … , 𝑒𝑗} 

; 𝑒𝑖 ∈ 𝐸 that connect 𝑣𝑜 and 𝑣𝑗  without forming a loop. Let 𝑅 be the set of routes on 𝐺. Define 

𝑘 = |𝑅|. Define traffic demand for an origin-destination (O-D) pair to be the number of 

vehicles that travel from the origin to the destination during a specified time interval. 

 

2.2 Wayfinding Problem 

 

Recall that in the microscopic perspective, an individual traveler engages in 3 levels of 

decision-making; operational, tactical, and strategic. In general, decision-making under 

strategic level is similar to solving a Wayfinding Problem. Given a transport network 𝐺 , 

Wayfinding Problem concerns with finding a path to traverse from 𝑣𝑎  to 𝑣𝑏  ; (𝑣𝑎, 𝑣𝑏 ∈ 𝑉). 

There are two components to Wayfinding Problem; route search and route choice (Bovy et al., 

1990). 

 Route search is a dynamic process that involves searching for routes on a given 

transport network. This set of route alternatives is called the choice set. The choice set derived 

from the transport network may vary between individuals and also with respect to time due to 

several factors (familiarity, convenience, outside factors, etc.) (Bovy et al., 1990). For each 

individual 𝑖, let 𝐴𝑖 ⊆ 𝑅 be its choice set. 



 

 After determining the choice set, the traveler now engages in the process called route 

choice. It is a static process in which given a particular trip, a route is chosen from the 

traveler’s current choice set. The route choice process for each individual might vary (Bovy et 

al., 1990). For an individual 𝑖  with choice set 𝐴𝑖 , let 𝑎𝑖 ∈ 𝐴𝑖  be the route picked by the 

individual 𝑖. 
 Taken individually, each traveler having his/her own preferences performs route 

search and route choice, picking what he/she believes to be the best route. When these 

decisions are aggregated, then information on the flow patterns and travel time for each link in 

the transportation network can be obtained. 

 

2.3 Random Utility Theory 

 

Random Utility Theory postulates that the individual acts rationally. A rational choice has 3 

components: perception-rationality, preference-rationality and process-rationality.  

 Perception-rationality assumes that individuals possess perfect information and are 

aware of all the alternatives and/or the state in each of those alternatives. Preference-

rationality assumes that an individual’s sense of utility is well defined. Meanwhile, process-

rationality assumes that the individual always picks the choice with the maximum utility that 

is still subject to constraints (McFadden, 1999).  

 In addition, the theory also postulates that the individuals in a population are 

homogenous such that these individuals share the same set of alternatives and face the same 

constraints (de Dios et al., 2011). 

 

2.4 Traffic Assignment 

 

Traffic assignment is defined as the allocation of a “given set of trip interchanges to a specific 

transport network or system”. Usually, it requires a description of the transport network and 

an OD matrix as an input, while the output varies but always includes traffic volume estimate 

and costs on each link (Patriksson, 2015). 

 

2.4.1 Early heuristics 

 

Early heuristics for traffic assignment include all-or-nothing schemes, in which all travelers 

are assigned to the cheapest route for each O-D pair in the network, and the use diversion 

curves derived from empirical studies (Patriksson, 2015). In 1957, efficient shortest route 

algorithms were developed and an implementation based on Moore’s algorithm that finds the 

minimum time through a network resulted in the first computer-aided traffic assignment 

(Moore, 1959). This resulted in an improved all-or-nothing scheme. However, the all-or-

nothing scheme turned out to be unstable (Patriksson, 2015). 

 

2.4.2 Wardrop’s principle 

 

In 1952, Wardrop stated two principles about flow distribution in a traffic network, which is 

collectively called Wardrop’s Principle. Wardrop’s first principle, which corresponds to User 

Equilibrium states the following: 

 

 “The journey times in all routes actually used are equal and less than those which 

 would be experienced by a single vehicle on any unused route” (Wardrop, 1952) 

 



 

 This state is reached if the travelers pick routes that minimizes their own travel time. 

In this case, the travelers are assumed to be selfish. At equilibrium, no traveler can decrease 

his/her own travel time by picking a different route. This equilibrium is stable and similar to 

the Nash equilibrium. The equilibrium reached is called the Deterministic User Equilibrium 

(DUE), and it is one of the most popular traffic assignments in practice (Zhang, 2011).  

 In 1956, it was shown, using nonlinear optimization theory, that the two Wardrop’s 

principles can be formulated as convex nonlinear optimization problems with linear 

constraints (Patriksson, 2015). Several iterative solution algorithms for DUE were identified 

such as Frank-Wolfe algorithm, method of convex combinations, method of successive 

averages, and Bar-Gera and Boyce’s origin-based algorithm (OBA) (Zhang, 2011). 

 The DUE is rooted on the users making rational choices. Suppose that the perception-

rationality assumption is foregone, finding the equilibrium will no longer lead to the DUE. 

This was solved by introducing a random variable, called the perception error, into the utility 

function (Daganzo, 1977). The equilibrium obtained, called the Stochastic User Equilibrium, 

requires iterative solution algorithms to converge and its uniqueness and stability is only 

confined over certain conditions (Zhang, 2011). 

 One could also consider the case where the flow rate in each source node is a 

deterministic function, instead of a constant function. The equilibrium obtained, called 

Deterministic User Equilibrium, can only be approximated through an iterative process 

(Merchant et al., 1978 ; Chiu et al., 2011). Finally, an entirely different kind of equilibrium is 

obtained if a different behavior theory is adapted. For instance, adapting Bounded Rationality 

will lead to a Bounded Rational User Equilibrium (BRUE), while adapting the Positive 

Behavior Theory will lead to Behavioral User Equilibrium. However, those equilibriums are 

undesirable due to issues with uniqueness, stability, and/or complexity (Zhang, 2011). 

 Meanwhile, the other Wardrop’s principle that was later called System Optimal states 

the following: 

 

 “The average journey time is a minimum” (Wardrop, 1952) 

 

 This state is reached if the users pick make route choices that minimizes the travel 

time of the entire network. In this case, the users are selfless. But this state is not stable since a 

traveler can pick a route that would serve him/her more even though it would lead to an 

increase in the travel time of the entire network (Patriksson, 2015). 

 In general, the user equilibrium and the system optimal do not coincide, and the 

difference between the two is called the price of anarchy. There are two ways to achieve 

system optimal when travelers are selfish; by imposing route choices to the travelers, or by 

implementing a congestion pricing strategy (Patriksson, 2015).  

 

2.5 Game Theory 

 

Using Wardrop’s Principle for doing traffic assignment requires solving convex non-linear 

optimization problems (Patriksson, 2015). As an alternative, one can look at traffic 

assignment through game theory, in which each traveller (referred to as a player) picks a 

route to use as his/her strategy.  

 Game Theory is defined as the “systematic study of strategic interactions among 

rational individuals”. Games can be written in strategic or normal form (𝑁, 𝐴, 𝑢) and requires 

specifying the set of players 𝑁, the set of actions available to each player 𝐴, and a utility or 

payoff function (could be cost function if minimization is the objective) for each player 

(Kockesen et al., 2007). 



 

 Several transportation studies used game theory to analyze traffic. A study in 2002 

used game theory to find the user equilibrium of a system in which the travelers minimize 

their risk instead of finding the route with the least travel time. It was done by modeling 

traffic assignment as a 𝑛 + 𝑚-player non-cooperative game consisting of 𝑛 players and 𝑚 

origin-destination (OD)-specific demons maximizing the player’s cost by randomly failing 

links, resulting in a risk-averse user equilibrium (Bell et al., 2002). 

 Meanwhile, another study attempted to find a traffic assignment that balances between 

user equilibrium (UE) and system optimal (SO). It was done by modeling the traffic system as 

a Stackelberg game with the leader being the traffic manager and the travelers as the followers 

in the game. Gradient Projection algorithm was used to improve the efficiency of the traffic 

assignment (Li et al., 2017). Finally, a 2017 study used Agent-Based Modelling (ABM) to 

demonstrate the emergence of cooperation in a 𝑁 -player repeated game on a two-road 

network (Levy et al., 2017).  

 

2.6 Agent-Based Modeling (ABM) 

 

Suppose that there are N travellers on a given O-D pair. An N-player game can then be 

defined with route choice process as their strategy and for simplicity, their own experienced 

travel time as the pay-off. However, this game has several complications. First, the game has a 

large number of outcomes. If the network has k routes and perfect information for each 

player/traveller is assumed, then the game has k
N
 outcomes. Second, there are certain complex 

behavioral interactions that might arise from vehicle-to-vehicle interactions (i.e.: lane 

changing) which is captured elegantly by defining rules instead of equations. To address the 

second complication, Agent-Based Modelling (ABM) would be a suitable tool (Levy et al., 

2017). 

 

2.7 Game-Theoretic Traffic Assignment 

 

This paper aims to perform traffic assignment by looking at it as a game where the 𝑁 travelers 

are finding their best route. Let 𝐴1
′ , … 𝐴𝑛

′  be the sequence of travelers that enters a non-empty 

transport network 𝐺 with one origin 𝑣𝑜 and destination 𝑣𝑓 at times 𝑡1, … , 𝑡𝑛 where 𝑡1 ≤ ⋯ ≤

𝑡𝑛.  

 In this game, each player picks a route to traverse from his/her choice set. A given 

choice would incur a cost that depends not only on that player’s choice of route, but also on 

the other players route choices. If we let 𝐴𝑖  be the choice set for the 𝑖𝑡ℎ  player, then the 

outcome space of the game can be defined as 

 

 𝐴 = 𝐴1 × 𝐴2 × … × 𝐴𝑛 = {𝒂 = (𝑎1, … , 𝑎𝑁): 𝑎𝑖 ∈ 𝐴𝑖, 𝑖 = 1, … , 𝑁} (2.1) 

 

with the outcome 𝒂 = (𝑎1, … , 𝑎𝑁) (also called an action profile) represented by an 𝑛-tuple. 

The action profile represents the actions made by each of the traveler in the game. Meanwhile, 

the cost incurred by the 𝑖𝑡ℎ player depends on the actions of all the players in the game, and 

can be denoted by 𝑐𝑖(𝑎1, … , 𝑎𝑁; 𝑦) or 𝑐𝑖(𝒂; 𝑦) where 𝑦  is the initial condition of the non-

empty transport network. In this study, 𝑐𝑖  is determined for each player 𝐴𝑖
′  though Agent-

Based Model. 

 Finally, an objective function 𝑓(𝒂) is defined that takes the action profile (𝒂) as an 

input and outputs a real number. The objective function will be used to compare any two 

given action profiles.  

 



 

 

3. GREEDY ALGORITHM FOR TRAFFIC ASSIGNMENT 

 

3.1 Greedy Algorithm 

 

Finding the optimal action profile that will fit a given objective function 𝑓 is intractable given 

its exponential nature as 𝑛 increases. One needs to consider using heuristics instead. In this 

paper, greedy algorithm will be used for this study. 

 The application of greedy algorithm in this study works as follows. Let 𝐴1
′ , … 𝐴𝑛

′  be the 

sequence of travelers that enters a non-empty transport network 𝐺. 𝐴1
′  will pick the best route 

depending on the current situation on the transport network, 𝐴2
′  will then pick the best route, 

and so on until 𝐴𝑛
′ . In this case, the traveler’s route choice will be based on the greedy 

algorithm. Each traveler’s best choice will be based on his best experienced travel time given 

the route choices made by the prior travelers.   

 Greedy algorithm is simple and easy to implement, as well as the algorithm is fast. 

However, one problem with greedy algorithm is that it does not always yield optimal 

solutions (Cormen, 2009). This happens because the greedy algorithm possess two inherent 

shortcomings; (1) it is short-sighted and (2) it is non-retractable (Edelsbrunner, 2008). In this 

case, there are two ways to improve the result of the greedy algorithm. Resolving the “short-

sightedness” of the greedy algorithm can be done by letting the greedy step be optimizing the 

decision of b travelers at a time through brute-force method. However, increasing the size of 

the batch b results to exponential increase in the running time. 

An alternative to improving the result of the greedy algorithm is to resolve its “non-

retractability”. In this case, a backtracking step would be introduced to tweak the result of the 

greedy algorithm. In the context of this study, the greedy algorithm can be improved by 

introducing a backtracking step as follows.  

 Once the greedy algorithm is finished with action profile (𝑎1, 𝑎2, … , 𝑎𝑛), randomly 

tweak the choice of one of the travelers, say 𝐴𝑖
′ . After that, re-do the greedy algorithm picking 

the best route for 𝐴𝑖+1
′ , then picking the best route for 𝐴𝑖+2

′ , and so on. Until the best route for 

the last traveler 𝐴𝑛
′  was picked. If the resulting action profile is better than the greedy once, 

replace the old action profile with the new action profile. Otherwise, retain the old action 

profile. 

 The backtracking step can be repeated 𝑏 times, which on a 𝑘-route transport network 

will require running at most 𝑏𝑘𝑛 simulations. 

 

3.2 Objective Function 

 

The objective functions that will be used in this paper is based on Wardrop’s Principles; User 

Equilibrium and System Optimal.  

 

3.2.1 User equilibrium 

 

For a real number 𝑝 ≥ 1, the 𝐿𝑝-norm of a vector 𝑥 is defined by 

 

 ||𝑥||
𝑝

= (|𝑥1|𝑝 + |𝑥2|𝑝 + ⋯ + |𝑥𝑛|𝑝)1/𝑝 (3.1) 

 

Let 𝒂 be the action profile of 𝑛 players on a 𝑘-route transport network. The objective function 

based on User Equilibrium (UE) looks at how close the average travel time of each route in 



 

the network to the ideal state, where the average travel time in each route is equally 

distributed. The 𝐿𝑝-norm will be used to measure that closeness. If 𝑓𝑈 is the objective function, 

then 

 

 

𝑓𝑈(𝒂) = ‖[

𝛼1

𝛼2

⋮
𝛼𝑘

] − [

1/𝑘
1/𝑘

⋮
1/𝑘

]‖

𝑝

 (3.2) 

where 𝛼𝑖 is the average travel time of the travelers belonging to the last 𝑛𝑤𝑖𝑛𝑑𝑜𝑤 travelers who 

used route 𝑖. 
 A value of 𝑓𝑈 that is closer to 0 implies that the system is close to the ideal state of 

Wardrop’s User Equilibrium. 

 

3.2.2 System optimal 

 

Let 𝒂 be the action profile of 𝑛 players on a 𝑘-route transport network. The objective function 

based on System Optimal (SO) is just the average travel time of the 𝑛 travelers in the transport 

network. Hence, the objective function 𝑓𝑆 can be defined as 

 

 
𝑓𝑆(𝑎) =

1

𝑛
∑ 𝑐𝑖(𝒂)

𝑛

𝑖=1

 (3.3) 

 

where 𝑐𝑖(𝒂) is the cost incurred by the 𝑖𝑡ℎ player. 

 

 

4. METHODOLOGY 

 

4.1 Experimental Setup 

 

4.1.1 Traffic simulator 

 

For this study, the primary traffic simulator used is LocalSIM, a DOST-PCIEERD funded 

microscopic traffic simulation software. Compared to other traffic simulators, this software 

aims to replicate Filipino traffic behavior (Palmiano, 2017). 

 The car-following model used by the LocalSIM in this study was IDM (Kesting et al., 

2013), with the conflict resolution model adapting the model developed by Cruda and Andaca 

(2016) modified to fit with IDM car-following model. In addition, the flow rate used in the 

study is 1250 veh/hr, the calibrated road capacity for LocalSIM (Palmiano, 2017). As the 

study will assume constant entry of vehicles, then the headway used is 2.88 s. 

 For this study, the travel time is defined includes the time delay due to queuing. In 

addition, route choice made by the travelers will be determined by the greedy algorithm. 

Finally, any process that gives random values are turned off so that the simulator outputs will 

not vary from using the same inputs. Table 4.1 shows the simulator inputs used in the study. 

 

Table 4.1: Simulator Parameters used in the Study 

Simulator Parameters Meaning Value 

𝑣𝑚𝑎𝑥 Max. velocity 16.67 𝑚/𝑠 

𝑎𝑚𝑎𝑥 Max. acceleration 3.15 𝑚/𝑠2 



 

Vehicle length  4.81 𝑚 
Vehicle width  1.83 𝑚 

IDM Parameters Meaning Value 

𝑣0 Desired velocity 33.33 𝑘𝑝ℎ 

𝑇 Safe time headway 1.6 𝑠 

𝛿 Acceleration exponent 4 

𝑠0 Minimum spacing 0 

 

 

4.1.2 Map 

 

Figure 4.2 shows the road network used for this study. The road network has 3 routes that are 

coded by “0”, “1”, and “2”, with total lengths of 218 m, 234.1 m, and 253.6 m respectively. 

The entry lane is a 3-lane road while the exit lane is a 1-lane road, in order to induce 

congestion in the network as well as to minimize the bias in vehicle conflict resolution due to 

the architecture of the software used. 

 

Figure 4.2 Road Network used in the study 

 
 

4.1.3 Generating initial conditions 

 

Since the traveler must enter the non-empty transport network, prior to the entry of the first 

traveler (𝐴1
′ ) the simulation will generate 𝑚 initial travelers, taking random route choices in 

order to congest the traffic network. The route choices of the initial travelers will serve as the 

initial condition of the transport network ( 𝑦 ). Define this initial condition to be the 

background traffic of the network. 

 For this study, the number of travelers in the background traffic is 90, and 30 different 

background traffic was used. The various generated background traffic can be classified into 

two; even route choices and uneven route choices. Figure 4.3 shows the scenario upon the 

entry of the observed travelers (green). The black vehicles represent the background traffic. 

 



 

Figure 4.3: Network Scenario upon the Entry of the Observed Travelers 

 
 

4.2 Benchmarking the Greedy Algorithm with the Global Optimum 

 

To determine how close the results of the greedy algorithm with the global optimum, both the 

greedy algorithm and the global optimum were run over the various background traffic, 

optimizing the action profile for 1 ≤ 𝑛 ≤ 9 travelers. The data points that would be used for 

this methodology would be the difference between the greedy algorithm and the global 

optimum in terms of the value of the objective function (𝑓𝑈 and 𝑓𝑆). For 𝑓𝑈 objective function, 

the parameter value for 𝑛𝑤𝑖𝑛𝑑𝑜𝑤 is 50, and for the 𝑝-norm, the 1-norm, 2-norm and ∞-norm 

were all used. 

 

4.3 Finding Optimal Number of Backtracks 

 

Introducing the backtracking step into the greedy algorithm can result in improved results, 

with the added running time as a penalty. Finding the optimal number of backtrack would 

mean balancing the gain in value with the increase in running time. 

 Both the greedy algorithm and greedy algorithm with 𝑏 backtrack steps will be run 

among the background traffic, optimizing fixed 100 vehicles. As the backtracking step 

introduces a random step, the greedy algorithm with 𝑏 backtrack will be repeated 30 times for 

each background traffic, with the average value of the 30 trials being used to compare with the 

greedy algorithm. The objective function to be used is the average travel time (𝑓𝑆) and for 

greedy algorithm with 𝑏  backtracks, the values of 𝑏  that were tested are 1 ≤ 𝑏 ≤ 10 . To 

determine the optimal number of backtracks, the time improvement (𝑓𝑆
(𝑏)

− 𝑓𝑆) to running 

time ratio will be used.  

 

 

5. RESULTS AND DISCUSSION 

 

5.1 Benchmarking the Greedy Algorithm with Global Optimum 

 



 

Figure 5.1 Greedy vs Global: Distribution of 𝑓 Differences 

 
Figure 5.1 shows the distribution of the discrepancies between the greedy algorithm and the 

global optimum for system optimal 𝑓𝑆 (left graph) and user equilibrium, using 1-norm as the 

objective function 𝑓𝑈 (right graph).  

 In both cases, the discrepancies between the greedy algorithm and the global optimum 

started to appear at 𝑛 ≥ 7. Also, in both cases, it can be noticed that the upper box is longer 

than the lower box, which means that the median is way closer to the lower quartile than the 

upper quartile. This implies that for most background traffic, the discrepancies between the 

greedy algorithm and the global optimum is near 0, albeit increasing, while there are a handful 

of background traffic that shows high discrepancies between the greedy algorithm and the 

global optimum as shown by the long whiskers. Hence, it can be said that for most of the 

initial conditions, the increase in discrepancies is slow. One difference between the two is that 

for the distribution of differences for 𝑓𝑈 , the dispersion and the extreme value seems to 

continue increasing beyond 𝑛 > 9, while that is not the case for 𝑓𝑆. 

 For the user equilibrium, similar results are obtained even when the 2-norm or the ∞-

norm was used as shown in Figure 5.2 with the 2-norm on the left and the ∞-norm on the 

right. 

 

Figure 5.2 Greedy vs Global: Distribution of 𝑓𝑈 Differences using 2-norm and ∞-norm 

 
 

5.2 Comparing Greedy Algorithm with Backtrack 

 

After benchmarking the greedy algorithm with the global optimal, the greedy algorithm and 

greedy algorithm with backtracking will be compared. Table 5.3 shows the average travel 

time and the normalized running time ratio for various values of 𝑏. 



 

 

Table 5.3 Greedy Algortithm with 𝑏 Backtracks 

𝑏 

Time of greedy 

with 𝑏 backtracks 

𝑓𝑆
(𝑏)

 

Time improvement 

from greedy 

𝑓𝑆
(𝑏)

− 𝑓𝑆 

running time ratio 

𝑟(𝑏)/𝑟  with 

𝑟 = 3292.78 𝑠 

0 158.4346 s 0 1 

1 157.8854 s 0.5492 s 1.4803 

2 157.6503 s 0.7843 s 2.0294 

3 157.3648 s 1.0698 s 2.6320 

4 157.2806 s 1.154 s 3.2604 

5 157.1879 s 1.2467 s 3.7877 

6 157.0389 s 1.3957 s 4.2098 

7 157.0262 s 1.4084 s 4.7773 

8 156.9526 s 1.482 s 5.3431 

9 156.9112 s 1.5234 s 5.9856 

10 156.8284 s 1.6062 s 6.5259 

 

 Figure 5.4 shows the 95% confidence interval (left graph) and the distribution (right 

graph) of time improvements from the greedy algorithm for increasing number of backtracks 

(1 ≤ 𝑏 ≤ 10). It can be seen that the average travel time improvement, shown by the thick 

blue line in the left graph, is increasing but has a negative concavity. This affirms the 

decreasing marginal returns from increasing the number of backtrack. Meanwhile, the right 

graph shows a more detailed picture of what happens. The discrepancy seems to stay 

consistent with increasing 𝑏, but the extremes sometimes fluctuates. This implies that for 

some background traffic with already high improvement, increasing the number of backtracks 

might lead to smaller improvement. Finally, as the lower box is slightly shorter than the upper 

box in the box plot, the distribution of time improvement seems to be skewed slightly towards 

0. 

 

Figure 5.4 Plot of Time Improvements for Increasing Number of Backtracks (𝑏) 

 
 Figure 5.5 shows the ratio between the travel time improvement and normalized 

running time. From the graph, it can be seen that the ratio peaked at 𝑏 = 3. Hence 3 is the 

number of backtracks that balances the increase in running time and the travel time 

improvement from the greedy algorithm. 

Figure 5.5 Travel Time Improvement to Normalized Running Time Ratio 



 

 
 

5.3 Multiple O-D Pairs 

 

One of the limitations of this study is just examining the algorithm under a single O-D pair. It 

is possible to do the same setup under multiple O-D pairs, albeit with a different 

methodological set-up. An important aspect of this study is that entry time of the travelers are 

controlled and is consistent within the same replications under the same background traffic. In 

this case, the methodology can be extended. However, a lot of initial conditions might be 

needed since it’s possible for more types of initial conditions due to the possible interaction 

among the vehicles in more than one O-D pairs. 

 

5.4 Recommendations 

 

Further extensions can be done for game-theoretic treatment for traffic assignment. Listed 

below are some of the recommendations that could be done for further research: 

 

1. Make the entry of vehicles follow poisson distribution instead of constant. A 

parameter 𝜇 can be fixed for the poisson distribution. 

2. See how the optimal number of backtracks changes as the number of optimized 

vehicles (𝑏) changes. 

3. Look at different conflict area models. 

4. Perform sensitivity analysis for parameters used in the study like 𝑚, 𝑛, 𝑛𝑤𝑖𝑛𝑑𝑜𝑤. 

5. Parallelizing of processed to reduce running time. Parallelization can be done on the 

backtrack step by distributing the 𝑏 backtracks into several processes. 
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