Examining the Possibility of Fuzzy Set Theory Application in Travel Demand Modelling

Gusri YALDI PhD Student ISST-Transport Systems University of South Australia Adelaide, South Australia, SA 5001

Fax: +61 8 8302 1880

E-mail: Gusri.Yaldi@postgrads.unisa.edu.au

Wen Long YUE Senior Lecturer, Program Director ISST-Transport Systems University of South Australia Adelaide, South Australia, SA 5001

Fax: +61 8 8302 1880

E-mail: Wen.Yue@unisa.edu.au

Michael A P TAYLOR Professor of Transport Planning Director - ISST University of South Australia Adelaide, South Australia, SA 5001

Fax: +61 8 8302 1880

E-mail: Michael. Taylor@unisa.edu.au

Abstract: The sources of errors in travel demand model output are not only from a lack of information related to the parameters that the model tries to estimate but also due to the absence of sharply defined criteria of class membership that can play important roles in human thinking, for which qualitative variables may be better representations. Fuzzy Set Theory (FST) is suggested as an approach to tackle the computation of such variables. Combined with other approaches, in this case Artificial Neural Network (NN) and Doubly Constrained Gravity (DCG), the FST is used to model intra city work trip distribution with trip length addressed as a fuzzy attribute. However, the fuzzy model tends to perform with the same level of accuracy as un-combined models. In some cases, the hybrid models have a slightly lower performance than NN and DCG. Findings from this study suggest that FST may be suitable for inter city trip, but not short trip distribution model.

Key Words: Fuzzy Set Theory, Artificial Neural Network, Doubly Constrained Gravity Model

1. INTRODUCTION

Modelling in transport system planning has important roles to play. According to Hensher and Button (2000) the role of modelling is essential in most decision-making processes. The impacts of changes in the systems can be predicted through a model, providing a cheaper alternative when compared to the impact investigation after the changes are directly applied to the systems.

A travel demand model is an important tool for forecasting the impact of the changes in operating characteristics on the usage of the transport networks, either now or in the future. The result is used to enhance the existing service quality by, for example, modifying the use of available services or providing new infrastructure facilities. For the latter purpose, the result is used to plan and evaluate each proposed alternative solution before selecting the best

option. In conventional transportation planning practice the model has generally been subdivided into (1) Trip Generation, (2) Trip Distribution, (3) Mode Choice, and (4) Traffic Assignment. This study focuses on trip distribution only, especially intra city work trip.

Development in travel demand modelling often involved the application of theories from other disciplines such as economies, information technology and even biology in order to maintain the behavioural basis and to simplify the model, and to obtain better results. Fuzzy Set Theory (FST), originally from the information technology discipline, is one of them.

As travel demand modelling can be related to the decision-making by humans, the process of which often use natural languages (qualitative variables) to communicate amongst them, FST is claimed to be able to tackle such variables. The natural language is characterized by uncertainty, ambiguity and imprecision that conventional probability theory is unable to capture. Thus, FST is potentially a powerful tool in dealing with uncertainty related to the semantic meaning of events, phenomena or statements that often occur in transport systems (Teodorovic and Vukadinovic, 1998, Zimmermann, 1991).

Our literature review suggests that FST application in travel demand modelling is continuously growing. FST is claimed to compute the qualitative variables more accurately than assigning arbitrary numbers for such variables. However, the FST cannot model the demand by itself. It needs to be combined with other method(s), for example, studies conducted by Yin *et al.* (2002), Aldian (2003), Aldian & Taylor (2003), and Dell'Orco *et al.* (2007).

Yin *et al.* (2002) used the Fuzzy approach combined with Artificial Neural Network (NN). FST approach was used in grouping traffic patterns into similar cluster based on its characteristics determined through its degree membership values, NN approach was used in specifying input and output relationship in the same way as conventional NN. The hybrid approach was found effective and more accurate than a conventional NN model.

Aldian (2003) used Fuzzy Multicriteria analysis to calculate the aggregate utilities (trip production power and attractiveness) of inter city trip distribution model. The FST was used to calculate the crisp score of the attributes that construct the road user cost between an origin and a destination. There were three attributes, namely (1) Trip length/Distance, (2) Road geometry, and (3) Ride quality. The application of FST improved the model coefficient of determination by double that of the traditional model. Another study by Aldian and Taylor (2003) also suggested that use of FST combined with traditional trip generation model could improve the model coefficient of determination by factor of two. One of the fuzzy attributes in that study was also the distance/trip length.

For mode choice study, Dell'Orco *et al.* (2007) is a good example. They used FST combined with the Random Utility Theory/Discrete choice model in estimating the proportion of travellers choosing a particular transit/public transport among three alternatives with single utility criteria, in this case travel time. Travel time was assumed as a fuzzy criterion representing the users' uncertainty and vagueness. Thus, the travel time is presented in term of numeric interval such as left limit value, central value and right limit value. Hence, the study may be considered as a combination of random and fuzzy theories. A method to calculate the unique probability is also presented. Dell'Orco *et al.* (2007) termed this the hybrid approach.

The results were compared to the traditional Logit model. It was found that the hybrid model generated results fitted to the experimental data and with a significant level higher than that for the Logit model. However, there was a difference in the chosen alternative rank. The hybrid model gave the same rank or order in term of proportion to choice behaviour survey of the participants, but the Logit model did not, even though the first/the highest alternative is the same. Although various studies demonstrated the advantages of FST in improving the model performance, there is no study so far that used FST in intra city trip distribution, especially work trips.

This paper is aimed at investigating the possibility of modelling intra city work trip distribution combining FST with two different trip distribution modelling methods, namely doubly constrained gravity (DCG), called the Fuzzy Gravity model (FG), and Artificial Neural Network, named the Fuzzy Neuro model (FN). The independent variables for NN (the input nodes) are the same as the DCG. Those are trip production (P), trip attraction (A) and trip length/distance (D). The dependent variable is trip flow (T_{ij}) . The trip length here is addressed as a fuzzy attribute as used by Aldian (2003) and Aldian & Taylor (2003). However, they used the distance multiplied with other attributes (ride quality and road geometry) to calculate the road user cost for intercity trip generation and trip production models.

According to Aldian & Taylor (2003), distance is a fuzzy attribute because the following facts, namely (1) Most travellers would not know the exact distance travelled from origins and destinations, and (2) Each traveller starts to travel from different points within an origin zone to different points in the destination zone. These considerations can also be applicable to the commuter trips such as work trip where the trip makers start their journey from different locations in the same origin zones to different locations in the same destination zones. Therefore, fuzzy attribute is used to represent such incomplete/imprecise variable. The Chen and Hwang (1992) method was used to calculate the crisp value of the fuzzy attribute. The fuzzy distance was divided into 29 categories based on the trip length data. More details regarding fuzzy attribute scoring is given in the second half part of the paper.

Meanwhile, the DCG was used in this study because it is known as the best traditional method for modelling work trip distribution, and is widely used. The NN approach is used in various studies in transportation area provides evidences of the advantages of this technique compared with existing methods in the relevant studies. For example, multilayer perceptron neural network has been compared with Discrete Choice Model (DCM) for mode choice study as reported by Cantarella & de Luca (2005), Hensher & Ton (2000), Carvalho *et al.* (1998), and Subba Rao *et al.* (1998). There is less reported application of NN in trip distribution compared to mode choice study.

Black (1995) reported a study of spatial interaction modelling using NN focusing on commodity flows. The model was structured based on the doubly constrained gravity model (DCG) and named as Gravity Artificial Neural Network (GNN). For passenger flow modelling, Mozolin *et al.* (2000) is a good example. They used NN to model trip distribution which is also characterized by DCG. Both studies reported promising results.

Originally from Biology, NN is gradually being adopted in many studies, including travel demand modelling due to the following reasons: (1) Powerful pattern classification and pattern recognition, (2) Ability to learn and generalize from experience, (3) Ability to learn

from example, and (4) Ability to capture the functional relationships among data even if the underlying relationships are unknown or hard to describe (Teodorovic and Vukadinovic, 1998). Therefore, combining NN with FST is expected to improve the model performance more than the NN itself. In case of DCG, it is also expected the FST can lift the accuracy of the overall model.

The performance of NN is characterized by its important properties, such as learning algorithm, activation function, number of layers, number of nodes inside each layer, and learning rate (Teodorovic and Vukadinovic, 1998, Dougherty, 1995). The amount of dataset and the ratio for training, validating and testing is also important for the NN fitting performance (Carvalho et al., 1998). Back-Propagation with momentum is the learning algorithm used in this study, while Sigmoid function (Logsig) is the activation function. The remaining properties need to be found through a trial and error procedure as the guideline does not exist so far (Zhang et al., 1998).

There are three different learning rates, various hidden layer nodes starting from one to twenty nodes and five different percentages of dataset for training, validation and testing used in this study. Therefore, there are total one hundred scenarios used in this study. The purpose of using that number of scenarios is to define the ability of FST in improving the NN model with various modifications on its properties. Thus, the consistency of the model performance can be evaluated.

For the DCG models, the trip distribution was calibrated using Hyman's algorithm (Hyman, 1969). The model was calibrated with two different deterrence functions, namely Negative Exponential and Negative Power functions. We used the same data as NN models to calibrate and to test the gravity model. To measure the model performance, Root Mean Square Error (RMSE) was used. Two kinds of t-test, namely (1) One-Sample t-test and, (2) Paired t-tests, were used to evaluate the performance of each model.

Overall, the NN performs at the same level as the DCG models. The hybrid models (FN), tends to perform as good as the NN models. The FG model has very much the same results as DCG models; therefore the FN model also performs the same level as the NN models. It is suggested that the FST approach cannot improve both NN and DCG model performance for short term work trip distribution modelling, and hence unsuitable to combine with them.

The following section describes the model development for both NN and DCG, scoring the fuzzy distance attributes, discussion on the model performance and conclusions.

2. MODEL DEVELOPMENT

2.1 NN and FN Model Structures

The structure of the NN model is one of its important properties. Multilayer perceptron neural network is commonly used in many studies, which is also used here. It has three layers, namely input, output and hidden layers. Each layer has a number of nodes or processing units. Except for hidden layer nodes, the numbers of processing units are determined by the variables that construct the expected outputs.

The doubly-constrained Gravity model is widely known and used to model trip distribution when both trip production and trip attraction totals are known. The NN structure, it is analogue to doubly constrained gravity model. The trip flow is a function of trip production, trip attraction and trip length as the deterrence factor. Therefore, there are three nodes at the input layer, while output layer has only one node. The number of hidden layer node is obtained through trial and error. It is started from one to twenty nodes (Figure 1.a).

The proposed fuzzy-neuro model structure for trip distribution is illustrated by Figure 1.b. There are also three input nodes as NN model. The difference is in the trip length, where the distance is processed as a fuzzy attribute. The output is the trip flow from specified origins and destinations.

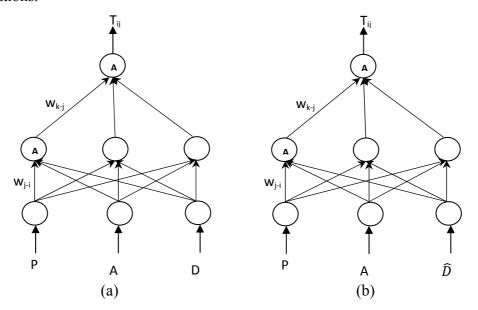


Figure 1 NN and FN model structures

2.2 Learning Rate

The role of learning rate is to determine how much the layer weight should be adjusted on each calibration process. In order to find the value of learning rate that can give the best performance of the network, three different values were used. Those are 0.1, 0.01 and 0.001. Those values are chosen as suggested by literature review where there is no standard value for that. It is usually a small positive value, below one.

2.3 Hidden layer node

Unlike other layers, the number of nodes in hidden layer(s) is determined through a series of experiments. To investigate the relationship between numbers of nodes in hidden layer, various networks were developed with number of nodes starting from one to twenty nodes. There is no literature so far suggested the relationship between node numbers and model performance. However, the higher numbers of node will lengthen the calibration/training time.

2.4 Data for Training, Validation and Testing

The study used work trip data collected by Transportation Agent of Padang City, West Sumatra, Indonesia. It was collected in 2003. Work trips formed about 16 per cent of total

trips (Figure 2). There are 36 traffic analysis zones. Hence, there are 1296 samples for all nodes in input and output layers. Those data are divided into training, validation and testing samples.

The guidance in dividing the data sets into developing and evaluating sample does not exist so far. However, the problem characteristics, data type and the size of the available data are the factors considered in making data division (Zhang et al., 1998). There are five different data divisions used in the study (Table 1). Data for training, validation and testing were randomly selected. The first three models are categorized as validated models since the networks were validated. The last two models are then categorized as un-validated ones. The impacts of different data division for training, validation and testing will be discussed later in this paper.

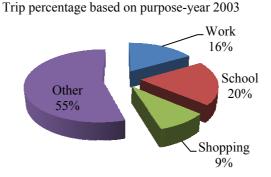


Figure 2 Trip percentage based on purpose (2003)

No	Data percer	ntage (%)		Domonic
No.	Training	Validation	Testing	Remark
1*	60	10	30	Called as 601030 model
2*	60	30	10	Called as 603010 model
3*	60	40	The same as validation data	Called as 6040V model
4	60	None	40	Called as 6040T model
_5	100	None	The same as training data	Called as 100 model

Table 1 Data division for NN model

2.5 Other Properties

Maximum number of epoch was set as 500 iterations. It is based on our experience, especially for networks with validation sample; the training was always stopped with epochs below 500. The epoch is also limited to prevent over fitting.

The model was developed by using the Neural Network Tool in MATLAB software version 7.0.1. The initial weights for all layers were randomly selected by the software. The weights were updated after all of the data are used in the training (batch mode). Model performance was measured using Root Mean Square Error (RMSE).

There are 100 NN models trained using MATLAB software. We firstly train 601030 models with learning rate 0.1 starting from hidden layer node of 1 to 20. Then, it is followed by the same model with learning rates of 0.01 and 0.001. The same procedures were undertaken for other NN models. There are also 100 FN models, trained by the same procedures as NN.

^{* =} validated networks/models

2.6 DCG and FG Models

The gravity model was calibrated and tested with the same data as NN model with 100 per cent data sample. Hyman's algorithm was used to calibrate the model as it is known as a robust maximum likelihood method for calibration. Two different deterrence functions were used, namely negative exponential and negative power functions. The formula to estimate the flow is given below.

$$T_{ij} = A_i O_i B_j D_j f_{c_{ij}} \tag{1}$$

With the constraints of:

$$\sum_{i} T_{ij} = O_i \tag{2}$$

And

$$\sum_{i} T_{ij} = D_{j} \tag{3}$$

The travel impedance $f(c_{ij})$, is a generalized function of the travel costs with one calibration parameter. We used negative exponential function $(e^{-\beta c i j})$ and negative power function $(c i j^{-n})$. Trip length (distance/D) is used as deterrence function variable. Here, trip length is assumed as a fuzzy attribute and represented by (\widehat{D}) for FG models.

Developing FG models have basically the same procedures as the convention model; however, the deterrence function is based on fuzzy distance. The trip length is considered as a fuzzy attribute. There are 29 categories of distances based on the trip length data (Table 2). Next section will discuss the process of converting fuzzy attribute to crisp score.

3. SCORING FUZZY DISTANCE

Fuzzy set theory firstly introduced by Zadeh (1965). It provides a framework in classifying imprecise objects/criteria into a continuum of grades of memberships. The imprecision occurs due to the absence sharply undefined criteria of class membership rather than the presence of random variables and it plays important role in human thinking (Zadeh, 1965).

In classic set theory, memberships are categorised as binary membership function. There are only two options such as yes or not, true or false, 'belongs to' or 'not belongs to' a set. The membership function is defined by crispy or precise character and given by the equation below (Teodorovic and Vukadinovic, 1998).

$$\mu_A(x) = \begin{cases} 1, & \text{if and only if } x \text{ is member of } A \\ 0, & \text{if and only if } x \text{ is not member of } A \end{cases}$$
 (4)

On the other hand, a fuzzy set A is represented by order pairs "A = $(x, \mu_A(x))$ ", where $\mu_A(x)$ is the grade of membership of element x in set A. Each element in a fuzzy set is labelled with certain grade of membership. The grade membership has a value from zero to one, i.e. a value from the closed interval [0, 1]. The greater $\mu_A(x)$, the greater the truth of the statement that

element x belongs to set A. As fuzzy sets are commonly defined by membership functions, each fuzzy set must comply with the condition below.

$$0 \le \mu_A(x) \le 1 \quad \forall x \in X \tag{5}$$

The membership value must be converted to a crisp score before being used in final computation. This process is relatively simple. Various methods are available, such as dominance, maximin, maximax, and conjunctive methods (Hwang and Yoon, 1979). In this study, we used a method proposed by Chen & Hwang (1992). The crisp score is obtained by maximizing set $(\mu_{max}(x))$ and minimizing set $(\mu_{min}(x))$ techniques. Triangular membership function is used to represent the fuzzy number in this study Figure 3). The following conditions and equations define the membership functions and calculate the crisp score for fuzzy attributes.

$$\mu_{max}(x) = \begin{cases} x, 0 \le x \le 1\\ 0, otherwise \end{cases} \tag{6}$$

$$\mu_{min}(x) = \begin{cases} 1 - x, 0 \le x \le 1\\ 0, otherwise \end{cases} \tag{7}$$

To compute the total score of a fuzzy number $A(\mu_T(A))$, the following formula is used.

$$\mu_T(A) = ((\mu_R(A) + 1 - U_L(A))/2 \tag{8}$$

Where $(\mu_R(A))$ is the right score and $U_L(A)$ is the left score. The scores are calculated as the intersection between the fuzzy numbers and the minimizing/maximizing sets. For the left score, it is the intersection with the minimizing set (diagonal solid line) and left size of the fuzzy number. The intersection between maximizing set (diagonal broken line) and right side of the fuzzy number represent the right score (Figure 3). We used 29 fuzzy numbers for distance based on the trip length data. This is almost triple than the scales suggested by Chen and Whang (1992).

The number of categories is relatively high as there are 36 traffic analysis zones with the minimum trip length of below 1 km and maximum longer than 27 km with an increment of 1 km. It is a typical of intra city work trip length. Previous studies that used FST had a maximum scale of 11 such as Aldian and Taylor study (2003). Thus, the applicability of FST for fuzzy numbers more than 11, and especially for short term trip, can be examined here. The crisp scores for 29 fuzzy numbers are reported on Table 3. These scores are used in all of FN and FG models.

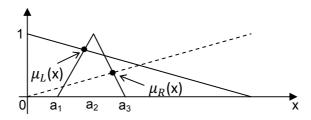


Figure 3 Scoring fuzzy attribute with triangular membership function

Table 2 Fuzzy distance crisp scores

Fuzzy	Intersec points/s	_	Total score	Fuzzy	Intersection points/sc	_	Total score	
number	Left	Right		number	Left	Right		
Less than 1	1.000	0.034	0.017	About 15	0.483	0.552	0.534	
About 1	0.966	0.069	0.052	About 16	0.448	0.586	0.569	
About 2	0.931	0.103	0.086	About 17	0.414	0.621	0.603	
About 3	0.897	0.138	0.121	About 18	0.379	0.655	0.638	
About 4	0.862	0.172	0.155	About 19	0.345	0.690	0.672	
About 5	0.828	0.207	0.190	About 20	0.310	0.724	0.707	
About 6	0.793	0.241	0.224	About 21	0.276	0.759	0.741	
About 7	0.759	0.276	0.259	About 22	0.241	0.793	0.776	
About 8	0.724	0.310	0.293	About 23	0.207	0.828	0.810	
About 9	0.690	0.345	0.328	About 24	0.172	0.862	0.845	
About 10	0.655	0.379	0.362	About 25	0.138	0.897	0.879	
About 11	0.621	0.414	0.397	About 26	0.103	0.931	0.914	
About 12	0.586	0.448	0.431	About 27	0.069	0.966	0.948	
About 13	0.552	0.483	0.466	More than 27	0.034	1.000	0.983	
About 14	0.517	0.517	0.500					

3. MODEL OUTPUT AND DISCUSSION

3.1 NN and FN Model Performance

The behaviours of both NN and FN models are very similar for all variations in the network properties. They behave very much the same (see Tables 3 and 4). For examples are the experiments for validated networks with three different learning rates (0.1, 0.01, and 0.001). The training was stopped at generally almost the same epoch.

Table 3 Number of stopped epoch for NN and FN model (LR = 0.1)

									Stop	ped epoch			
HL's Node	601030 model				603010 1	model	6040V model		6040T 1	model	1	100 model	
	NN	FN	NN	FN	NN	FN	NN	FN	NN	FN			
1	62	61	199	84	198	84	500	500	500	500			
2	69	69	73	73	73	73	500	500	500	500			
3	55	58	69	74	67	73	500	500	500	500			
4	60	57	214	85	214	83	500	500	500	500			
5	62	62	65	66	65	66	500	500	500	500			
6	49	51	82	92	91	195	500	500	500	500			
7	94	90	227	226	308	237	500	500	500	500			
8	65	64	210	152	210	217	500	500	500	500			
9	12	68	100	94	99	93	500	500	500	500			
10	39	37	204	204	204	204	500	500	500	500			
11	65	71	184	176	184	176	500	500	500	500			
12	31	32	40	42	41	43	500	500	500	500			
13	45	51	60	71	65	165	500	500	500	500			
14	45	42	208	205	208	205	500	500	500	500			
15	33	33	42	43	42	43	500	500	500	500			
16	39	39	55	54	52	52	500	500	500	500			
17	25	36	32	34	35	37	500	500	500	500			
18	35	35	41	44	43	47	500	500	500	500			
19	47	55	71	192	68	84	500	500	500	500			
20	46	141	53	141	49	141	500	500	500	500			

All NN models have generally the same performance (RMSE) and trend as FN models, (see Appendices A and B for more details on NN and FN model performances). The number of stopped epochs fluctuates as well as the error level (RMSE). However, the results between different learning rates suggest a stable performance with a slightly fluctuating error level.

For un-validated networks, the fluctuation in the error level (RMSE) is much lower compared to the validated ones. The number of epochs was also generally the same. None of them was stopped early, and all networks reached the maximum epoch, in this case five hundred epochs. That means no network reached the specified goal. Maximum epoch number and specified training goals are also important properties of NN. For un-validated networks, the trained will be stopped when either the maximum number of epoch or specified goal is reached.

Table 4 The performance of NN and FN models (LR = 0.1)

		Model 1	performa	nce (RMSE	Ε)					,	
HL's Node	601030 mo		model	el 603010 model		6040V model		6040T mc	del	100 mode	1
Tiode	•	NN	FN	NN	FN	NN	FN	NN	FN	NN	FN
	1	321	321	190	311	196	305	194	194	185	188
	2	306	307	293	295	289	290	193	196	181	177
	3	252	250	245	240	246	247	185	186	173	173
	4	306	304	182	283	185	286	179	181	169	168
	5	334	335	340	340	338	338	177	177	167	169
	6	341	340	342	341	337	226	184	189	168	180
	7	349	348	267	258	199	241	192	194	183	186
	8	359	358	194	225	191	189	193	187	170	174
	9	331	331	338	337	336	336	196	204	174	174
1	0	310	311	176	173	190	191	185	189	173	170
1	1	353	352	191	208	202	212	180	179	168	167
1	2	296	296	313	312	298	299	181	182	167	167
1	3	328	327	339	338	325	191	184	185	167	170
1	4	285	286	174	172	190	191	186	188	168	167
1	5	286	288	271	271	266	266	183	184	167	166
1	6	357	358	339	339	338	339	181	182	166	166
1	7	337	334	340	337	329	328	189	189	170	168
1	8	341	343	344	343	339	339	188	189	169	172
1	9	332	331	340	206	338	338	182	182	179	166
2	0	327	204	334	194	335	217	178	179	169	170
Mi	n	359	358	344	343	339	339	196	204	185	188
Ma	X	252	204	174	172	185	189	177	177	166	166

As the models have more than one variable, it is difficult to conduct the statistical tests and draw a general performance of both NN and FN models. Therefore, the network needs to be simplified. Thus, another experiment was conducted involving the NN and FN models, where learning rate and hidden layer node number were held constant. Since a network with different initial learning rate has generally the same results as indicated by the previous results, a constant value of 0.1 is selected as the initial learning rate in the next experiment. The network with a constant ten nodes in hidden layer is then used. The epoch is limited to 500 iterations. The network scenario remains the same as in Table 1. The experiment is conducted for ten times in order to enable the statistical test. There are two kinds of t-test undertaken in the next experiments, namely:

1. One-Sample t-test

It is used to measure the significant difference of average performance (RMSE) of NN and FN compared to DCG models

2. Paired/Match t-test

This test is used to measure the significant difference of average performance (RMSE) between NN and FN models

All tests were conducted by using SPSS Statistic 17.0 software. The results of the experiments and testing are reported later in this paper.

3.2 DCG and FG Model Performance

The results of DCG and FG models are reported in Table 5. Both DCG and FG models were calibrated and tested with the same data, except for the trip length. Fuzzy distance was used to calibrate the FG model. The fuzzy distance was converted to crisp score before being used. Both models were calibrated by using Hyman's algorithm, known as a robust maximum likelihood method for calibration.

The calibration parameter value (β) for DCG and FG is significantly different, obtained after eight times of iteration where the difference between observed and modelled trip length equals to 0. Despite a great difference in the calibration parameter (β) value, both DCG and FG models perform relatively the same. They both have almost the same RMSE, which is 167 (Table 5).

Compared to negative exponential function, the gravity model performance with deterrence function of negative power has a 23 per cent higher RMSE. It also has a higher RMSE than FG model with the same deterrence function, by 2 per cent.

Table 5 DCG and FG calibration parameter and RMSE

Deterrence function	Calibration p	parameter (β)	RMSE	<u>, </u>	
Deterrence function	DCG	FG	DCG	FG	
Negative Exponential	0	.109	3.199	167	167
Negative Power	0	.539	0.649	206	202

3.3 Statistical Test Results

The results of the modified NN and FN models as explained in section 3.1 are reported in Table 6. It also shows the t-test outcomes for all scenarios and models. The first test (t*) is Paired/Match t-test between NN and FN models, while the second one (t**) is One-Sample t-tests of NN and FN compared to DCG models. All tests are based on two-tail t-tests with level of confident 95 per cent.

The paired test results between NN and FN models suggest that the average performance is statistically the same, except for the 6040T model. The average RMSE for this scenario is statistically different, where the NN model has a lower error than the FN. However, this model is un-validated one, therefore, the result cannot be generalized. Another un-validated model (100 Model) has a calculated value of t which almost reaches the critical value (t-table value =2.26). For this scenario, FN model has a lower error than NN model which is contrast to previous model.

Table 6 Statistical Test Results

Evenariment				Mode	l perform	ance (RI	MSE)			
Experiment	1	2	3	4	5	6	7	8	9	10
1	310	311	176	173	190	191	185	189	173	170
2	178	179	196	192	190	192	185	187	168	167
3	332	330	163	162	184	180	182	183	168	168
4	321	322	334	176	189	190	186	188	170	170
5	178	179	180	179	194	194	191	191	171	171
6	290	288	305	300	283	281	185	186	168	168
7	269	270	215	213	220	220	183	184	169	167
8	296	295	219	212	208	209	183	185	167	169
9	267	268	238	234	247	247	186	187	170	169
10	366	367	166	329	180	178	183	184	169	168
Average	281	281	219	217	208	208	185	186	170	169
SD	62	61	59	56	32	31	3	3	2	1
1 Ar	0.36		0.09		0.17		5.21		2.20	
t*	(2.26)		(2.26)		(2.26)		(2.26)		(2.26)	
t**	5.49	5.54	2.94	2.94	2.86	2.88	8.08	9.83	4.128	3.07
[***	(2.26)	(2.26)	(2.26)	(2.26)	(2.26)	(2.26)	(2.26)	(2.26)	(2.26)	(2.26)

Note: (1) 601030 NN, (2) 601030 FN, (3) 603010 NN, (4) 603010 FN, (5) 6040V NN, (6) 6040V FN, (7) 6040T (NN), (8) 6040T FN, (9) 100 NN, (10) 100 FN

The validated model has a lower difference of average error than the un-validated models when they are compared to the DCG, except the 601030 scenario. This is likely related to the data division, where only ten per cent of total data is used in the validation process. Other validated model scenarios have 30 and 40 per cent data for validation. Based on this finding, using a higher percentage of data for validation can improve the average neural network model performance. It also suggests that validated model can have lower errors compared to the well-known existing modelling approach (DCG).

Despite successful application in travel demand modelling, findings from this study suggest that FST do not improve the NN and DCG models, is seen in Table 6. To some extent, the use of FST could increase the discrepancy between observed and modelled trip. The possible reason is related to the characteristic of the work trip where the trip lengths are relatively short with one kilometre gap between them. Therefore, there is less ambiguity in the trip length compared to the inter city trip where the gap between each trip length category is much bigger as used by Aldian and Taylor (2003). The study had 11 scales used to represent the fuzzy distance from below 40 km, about 40 km until above 360 km with 40 km increment. Meanwhile, this study used higher number of scale (29) with an increment of one kilometre distance.

5. CONCLUSIONS

Finding from this study suggests that FST may not be applicable to short term trip distribution where the gap between the trip length attribute considered as fuzzy is relatively small. It causes too many scales being used and thus make the computation becomes more difficult and the result is less accurate. On the basis of our study, it appears better to use the single technique such as NN or DCG rather than combined with FST. This is indicated by the results of NN and DCG models compared to the hybrid models (FN and FG). Various NN and FN models were trained, validated and calibrated. The total number of networks is 100 for each model. However, the results suggest that none of the hybrid model outperforms the NN

models. The performance of FG models is about the same as DCG ones. It can be concluded that FST may be unsuitable to be used in modelling short distance trip such as work trip as indicated by this study.

REFERENCES

- ALDIAN, A. (2003) Analysis of Travel Demand in Developing Countries: A fuzzy Multiple Attribute Decision-Making Approach. *26th Australasian Transport Research Forum.* Wellington, New Zealand, ATRF.
- ALDIAN, A. & TAYLOR, M. A. P. (2003) Fuzzy multicriteria analysis for inter-city travel demand modelling. *Journal of the Eastern Asia Society for Transportation Studies*, 5, 1294-1307.
- BLACK, W. R. (1995) Spatial interaction modeling using artificial neural networks. *Journal of Transport Geography*, **3**, 159-166.
- CANTARELLA, G. E. & DE LUCA, S. (2005) Multilayer feedforward networks for transportation mode choice analysis: An analysis and a comparison with random utility models. *Transportation Research Part C: Emerging Technologies*, 13, 121-155.
- CARVALHO, M. C. M., DOUGHERTY, M. S., FOWKES, A. S. & WARDMAN, M. R. (1998) Forecasting travel demand: a comparison of logit and artificial neural network methods. *The Journal of the Operational Research Society*, 49, 711-722.
- CHEN, S. J. & HWANG, C. L. (1992) Fuzzy Multiple Attribute Decision Making. Lectures Notes in Economics and Mathematical Systems, Pringer-Verlag.
- DELL'ORCO, M., CIRCELLA, G. & SASSANELLI, D. (2007) A hybrid approach to combine fuzziness and randomness in travel choice prediction. *European Journal of Operational Research*, 185, 648-658.
- DOUGHERTY, M. (1995) A review of neural networks applied to transport. *Transportation Research Part C: Emerging Technologies*, 3, 247-260.
- HENSHER, D. A. & BUTTON, K. J. (2000) Introduction. IN HENSHER, D. A. & BUTTON, K. J. (Eds.) Handbook of Transport Modelling. Oxford, UK, Elsevier Science Ltd.
- HENSHER, D. A. & TON, T. T. (2000) A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice. *Transportation Research Part E: Logistics and Transportation Review,* 36, 155-172.
- HWANG, C. L. & YOON, K. (1979) *Multiple Attribute Decision Making: Methods and Applications,* Berlin, Springer-Verlag.
- HYMAN, G. M. (1969) The Calibration of Trip Distribution Models. *Environment and Planning*, 1, 105-112.
- MOZOLIN, M., THILL, J. C. & LYNN, U. E. (2000) Trip distribution forecasting with multilayer perceptron neural networks: A critical evaluation. *Transportation Research Part B: Methodological*, 34, 53-73.
- SUBBA RAO, P. V., SIKDAR, P. K., KRISHNA RAO, K. V. & DHINGRA, S. L. (1998) Another insight into artificial neural networks through behavioural analysis of access mode choice. *Computers, Environment and Urban Systems,* 22, 485-496.
- TEODOROVIC, D. & VUKADINOVIC, K. (1998) *Traffic Control and Transport Planning: A Fuzzy Sets and Neural Networks Approach,* Massachusetts, USA, Kluwer Academic Publisher.
- YIN, H., WONG, S. C., XU, J. & WONG, C. K. (2002) Urban traffic flow prediction using a fuzzy-neural approach. *Transportation Research Part C: Emerging Technologies*, 10, 85-98.
- ZADEH, L. A. (1965) Fuzzy Sets. Information and control, 8, 338-353.
- ZHANG, G., PATUWO, B. E. & HU, M. Y. (1998) Forecasting with artificial neural networks:: The state of the art. *International Journal of Forecasting*, 14, 35-62.
- ZIMMERMANN, H. J. (1991) *Fuzzy Set Theory and Its applications,* Massachusetts, Kluwer Academic Publisher.

Appendix A The performance of NN and FN models (LR = 0.01)

	Model	performai	nce (RMSE))						
HL's Node	601030 model		603010 model		6040V model		6040T model		100 model	
Tiode	NN	FN	NN	FN	NN	FN	NN	FN	NN	FN
1	322	321	190	311	196	305	195	195	185	189
2	301	313	293	295	289	290	194	195	182	180
3	254	253	244	239	246	246	183	189	177	181
4	305	305	171	283	180	286	186	182	170	168
5	334	335	340	340	338	338	176	177	167	169
6	342	341	342	341	337	337	187	189	169	182
7	348	348	269	255	255	201	195	195	185	187
8	359	358	192	223	190	193	194	186	171	175
9	331	331	338	337	336	336	196	198	175	176
10	308	308	180	176	192	193	187	189	174	171
11	353	352	180	165	195	179	178	176	168	168
12	293	294	178	178	183	185	181	183	170	168
13	327	327	338	338	325	324	184	184	167	170
14	285	286	183	182	194	195	185	186	169	168
15	288	288	270	270	265	265	184	185	167	170
16	362	361	180	164	179	180	180	183	169	166
17	336	336	339	336	328	327	185	189	170	169
18	342	342	343	342	339	193	187	190	170	173
19	332	331	340	339	338	338	182	182	169	167
20	326	205	333	196	334	218	178	179	169	171
Min	362	361	343	342	339	338	196	198	185	189
Max	254	205	171	164	179	179	176	176	167	166

Appendix B The performance of NN and FN models (LR = 0.001)

	Model	performar	nce (RMSE))						
HL's Node	601030 model		603010 model		6040T mo	6040T model		del	100 model	
11000	NN	FN	NN	FN	NN	FN	NN	FN	NN	FN
1	322	322	191	311	194	196	196	305	185	189
2	302	302	293	295	196	195	289	290	184	184
3	254	251	244	239	185	187	246	246	174	175
4	305	305	170	283	181	182	180	286	171	170
5	334	334	340	340	175	177	338	338	167	169
6	342	340	342	341	189	187	337	337	173	184
7	349	348	204	248	196	199	201	234	189	192
8	358	357	191	223	194	191	190	193	172	175
9	331	331	338	337	200	198	336	336	176	184
10	309	309	174	179	188	191	188	289	174	172
11	353	352	162	208	177	178	176	210	168	168
12	294	293	180	180	181	183	184	186	168	167
13	327	327	338	338	184	186	324	324	167	170
14	285	286	183	182	186	191	194	195	173	172
15	286	286	270	270	182	184	265	265	167	166
16	362	361	180	166	180	181	181	182	167	367
17	337	335	339	336	186	196	328	327	172	170
18	342	342	343	342	186	186	339	194	170	197
19	332	331	340	339	182	183	338	338	169	168
20	326	205	333	194	183	185	334	218	187	215
Min	362	361	343	342	200	199	339	338	189	367
Max	254	205	162	166	175	177	176	182	167	166