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Abstract: This paper presents a column generation-based heuristics for the Vehicle Routing 

and scheduling Problem with Soft Time Windows (VRPSTW). The subproblem has been 

solved using a modified stochastic push forward insertion heuristics that incorporates the early 

and late arrival penalties. The useful dual information (shadow prices) from the column 

generation master problem guides the heuristic subproblem to provide negative reduced cost 

columns of sufficient quality. The performance of column generation-based heuristics is 

evaluated comparing its results with a genetic algorithms heuristics whose initial population is 

based on the same insertion heuristics as used in the column generation subproblem. The 

results showed that the column generation-based heuristics produced better quality solutions, 

both in terms of cost and environment (CO2), in most cases in only quarter of the computation 

time, on average.  
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1. INTRODUCTION  

 

A major proportion of the total domestic frieght movement is based on road transport mode in 

many countries. Whereas, almost all of the intra-urban frieght movement (both pickup and 

deliveries) is carried out by trucks and/or vans. Door to door service industries such as home 

applience or utilities repair services, are also considered in the broader defination of the urban 

logistics. Transportion cost shares a considerable proportion in the prices of such services and 

many other products. With increase in the competation and innovations in technologies, 

frieght companies try to introduce many consumer satisfaction driven policies, such as 

deliveries within a pre-specified time period or time window. City logistics deals with the 

optimization of  logistics and transport activities within an urban area by considering costs 

and benefits for both public and private sectors, not only in terms of delivery cost but in terms 

of environment, traffic congestion and energy use; while still being within the framework of 
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market economy (Thompson and Taniguchi, 2001). 

 

Route optimization is one of the city logistics-related measures, which not only serves the 

logistics firms, it also advances the objectives of other stakeholders of city logistics (for 

example, city administration and residents) as it minimizes the number of delivery vehicles 

and their traveled distance thus help reducing congestion, emissions and safety problems as 

well. The Vehicle Routing and scheduling Problem with Time Windows (VRPTW) is a 

commonly adopted route optimization technique, which consists of finding a set of minimum 

cost routes (for delivery vehicles) to cover the demands (weights to be picked up or delivered) 

of all customers within their specified time windows [ai, bi]. In exact optimization field, often 

these time windows are treated hard, which means deliveries can not be done after the end of 

time windows bi. Furthermore, if a vehicle arrives earlier it has to wait (without associated 

cost) until the start of time windows ai. On the contrary, most of the city logistic-related 

literature is based on a more practical variant, i.e. the Vehicle Routing and scheduling Problem 

with Soft Time Windows (VRPSTW) that allows the delivery after bi at some penalty costs 

and also penalizes the waiting time in the case of early arrival. It has been observed that 

penalizing the waiting time (the VRPSTW case) results in less waiting time as compared to 

the hard time windows case (Qureshi et al., 2007).  

 

The column generation-based algorithms have been very popular in the exact optimization 

field for the Vehicle Routing and scheduling Problem with Hard Time Windows (VRPHTW) 

(for example, see Desrochers et al., 1992; Kohl et al., 1997; Irnich and Villeneuve, 2003; 

Feillet et al., 2004; Chabrier, 2006). These algorithms have not only improved the size of the 

problems solved enormously, they also have significantly reduced the computational efforts 

required for the hard time windows variant. Complex soft time windows constraints and time 

dependent costs have been the greatest barriers in the development of exact solution 

procedures for the VRPSTW. However, there have been few attempts in this regard (for 

example, see Tagmouti et al., 2007) but the excessive computation time severely limits the 

size of the problem. Therefore, majority of the literature in city logistics (reviewed in next 

section) relies on heuristics solutions for the VRPSTW, such as Genetic Algorithms (GA).  

 

This paper presents a column generation-based heuristics for the VRPSTW in order to 

improve the solution quality and to reduce computational times as compared to the available 

VRPSTW heuristics. The basic idea is to replace the NP-hard subproblem of column 

generation scheme i.e. the Elementary Shortest Path Problem with Resource Constraint 

(ESPPRC) by an insertion heuristics, which can handle complex soft time windows 

constraints efficiently. The shadow prices generated by the column generation method are 

utilized to find the reduced cost, and the customer insertion criterion is computed based on 

this reduced cost. The rest of the paper is structured as follows: section 2 provides a literature 

review of related research while the section 3 formulates the VRPSTW as a set partitioning 

formulation commonly adopted for column generation schemes, and its subproblem. The 

complete column generation-based heuristics is described in section 4. This section also 

defines the insertion heuristics subproblem. Section 5 outlines a GA heuristics used for the 

comparison with the column generation-based heuristics. Section 6 describes the 

implementation, test instances and discusses the results obtained on these instances with the 

two heuristics. Finally, section 7 draws some conclusions and gives some future research 

prospects.  
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2. LITERATURE REVIEW 

 

While bulk of the research targeting the soft time windows is heuristics based, the exact 

solution research incorporating soft time windows has been focused on the schedule 

optimization of a given fixed path considering linear (Sexton and Bodin, 1985) and/or 

generalized convex penalty functions (Dumas et al., 1990). Recently, Tagmouti et al. (2007) 

have presented an arc routing problem with soft time windows, where vehicles are not 

allowed to wait along their routes. In their column generation scheme, they have used a 

modified labeling algorithm for the Shortest Path Problem with Time Windows and Time 

Costs (SPPTWTC) subproblem earlier given by Ioachim et al. (1998). The vehicle arrival 

pattern has been represented by a continuous variable that resulted in very high computation 

times and limited the maximum size of problem solved to 40 customers.  

 

On the heuristics side, Balakrishnan (1993) described three simple sequential insertion 

heuristics for the VRPSTW based on the nearest neighbor, Clarke-Wright savings and space-

time rules. An early arrived vehicle has options of either start servicing the customer earlier 

than ai at some penalty or wait till ai without any cost. Hashimoto et al. (2006) used local 

search and dynamic programming in a route first schedule second algorithm to solve the 

VRPTW with soft time windows and variable travel time costs. First, routes are optimized 

using a local search algorithm and then the optimum service start time for each customer is 

found as a subproblem. Duin et al. (2007) used the VRPSTW model and solved it with a tabu 

search for each freight carrier in a framework of hybrid freight market, where a fraction of 

demands is pre-allotted and another fraction is available in a real time auctioning system. The 

freight carrier providing best bid to carry the extra demands wins the auction.   

 

Genetic algorithms (GA) are often employed in solving complex and close to real life 

VRPSTW instances in city logistics; for example, Taniguchi and Heijden (2000) used GA 

solutions of the VRPSTW to evaluate many city logistics measures such as cooperative 

delivery systems (CDS) and load factor control. Taniguchi et al. (2001) used a GA to solve a 

Probabilistic VRPSTW (VRPSTW-P) that incorporates the uncertainties of travel times on a 

road network. Yamada et al. (2004) used a similar GA approach for VRPSTW-P to study the 

travel time reliability of a road network. Utilizing the VICS (Vehicle Identification and 

Communication System) data and the data from 66 days operation of probe pickup/delivery 

trucks, Ando and Taniguchi (2007) have applied the VRPSTW-P and its GA solution to an 

actual delivery system in Osaka, Japan. Yamada et al. (2001) combined the logistics terminal 

location, CDS and VRPSTW in a single framework. The combined model was solved using a 

GA heuristics and the results were compared to a base case that did not use the CDS. Qureshi 

and Hanaoka (2005) studied a CDS using GA solutions of the associated VRPSTW, where a 

truck assigning module assigns consolidated routes back to trucks of participating companies.  

  

Many researchers in the field of the VRPSTW research have tried to use set partitioning linear 

optimization. Rochat and Taillard (1995) used a heuristic approach by first generating many 

candidate routes using intensified and diversified tabu search and then used set partitioning 

linear programming. Calvete et al. (2007) exploited goal programming to enumerate all the 

feasible routes and then used a set partitioning problem to solve the VRP with soft time 

windows with heterogeneous fleet and multi objectives. In a similar approach, Fagerholt 

(2001) solved a ship-scheduling problem with soft time windows. He used the Traveling 

Salesman Problem with Capacity, Hard Time Windows and Precedence Constraint (TSP-

CHTWPC) to enumerate all feasible routes and then optimizes their schedule using soft time 
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windows, before using a set partitioning problem.  

 

All above-cited references used set partitioning linear programming after enumerating some or 

all possible candidate routes for the VRPSTW, while this study utilizes the useful dual 

information, i.e. shadow prices, obtained every time a set partitioning linear program is 

solved. The set partitioning master problem and the heuristic subproblem are solved in cycles. 

Shadow prices are generated in master problem that guide the optimization in the heuristic 

subproblem, which in return provides the routes with negative reduced costs to augment the 

set partitioning linear program. A similar approach has been adopted for a dynamic VRPHTW 

by Chen and Xu (2006). 

 

Alvarenga et al. (2007) used a specialized genetic algorithm for VRPHTW to generate routes 

to be optimized with set partitioning formulation at the end of the algorithm. Dana and Le 

Pape (2005) presented a somewhat different approach in their branch and price heuristic for 

the VRPHTW, using a cooperation scheme between the classic column generation (using 

ESSPRC as subproblem), a MIP solver and some local search schemes. The main feature is to 

find a better integer solution (Global Upper Bound) earlier by MIP and local search to 

accelerate the classic branch and price method. An excellent review of the heuristic methods 

applied to the VRPHTW and the VRPSTW can be found in Braysy and Gendreau (2005a; 

2005b). 

 

 

3. SET PARTITIONING MODEL FORMULATION OF VRPSTW 

 

The VRPSTW is defined on a directed graph G  = (V, A). The vertex set V includes the depot 

vertex 0 and set of customers C = {1, 2, . . ., n}. The arc set A consists of all feasible arcs (i, j), 

i, j ∈ V. Both cost cij as well as time tij are associated with each arc (i, j) ∈ A. Time tij 

includes the travel time on arc (i, j) and the service time at vertex i, and a fixed vehicle 

utilization cost is added to all outgoing arcs from the depot, i.e. in c0j, j ∈ C. With every 

vertex of V there is an associated demand di, with d0 = 0, and a time window [ai, bi] 

representing the earliest and the latest possible service start times.  

 

The Dantzig-Wolfe decomposition or commonly known column generation scheme 

formulates the VRPSTW as a set partitioning problem (Eq. (1)-Eq. (3)) and into an 

Elementary Shortest Path Problem with Resource Constraint (ESPPRC) as a subproblem.  
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The role of the subproblem is to provide feasible single vehicle routes (also called paths or 

columns) to the linear program (LP) of the set partitioning master problem. Set P is the set of 

all such feasible routes. The variable yp takes value 1 if the route p ∈ P, is selected and 0 

otherwise. The cost of route p is denoted by cp, and aip represents the number of times route p 

serves customer i. The objective (Eq. (1)) selects a minimum cost set of routes from P such 

(1) 

 

 
(2) 

 
(3) 
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that each customer i ∈ C is serviced exactly once as per the constraint represented by Eq. (2). 

The integrality constraint is represented by Eq. (3); usually a linear programming relaxation of 

this constraint is solved where yp can vary anywhere between 0 and 1. In an exact solution 

algorithm, if the problem at hand satisfies the cost triangular inequality cij ≤ cih + chj, the 

solution possesses an integrality property which means that any optimal solution of the linear 

relaxation of the given set partitioning problem will have all yp values either 1 or 0. The cost 

structure of the VRPSTW not always follows the cost triangular inequality; therefore, a 

heuristics approach has been developed to get an integer solution (as described in §4.2).  

 

As the number of all feasible single vehicle routes in a VRPSTW instance may be very large, 

in each column generation iteration the set P is dynamically augmented using routes generated 

by the subproblem. The Elementary Shortest Path Problem with Resource Constraint 

(ESPPRC) subproblem is solved on the same graph as the original VRPSTW problem, but 

with reduced costs ijc′ on the arcs given by Eq. (4). The vector π represents the dual variable 

values (prices or shadow costs) for each customer i ∈ C obtained from the master problem. In 

the VRPSTW, the arc costs c’ij depend on the service start time at customer s’j (Figure 1); 

these costs are calculated as per Eq. (5), where ce and cl are unit penalty costs for early and 

late arrival, respectively. 

 

 
Figure 1 Cost function in the VRPSTW 

 









<′≤′′−+

′≤′<−′+
≤′≤

=′

∈∀−′=′

jjjjjeij

jjjjjlij

jjij

ij

iijij

asasacc

bsbbscc

bsc

c

 Cicc

 if ),(

 if ),(

                     a if ,

                 

j

π

 

 

The ESPPRC with early and late arrival penalties can be formulated as Eq. (6)-Eq. (14). It 

contains two decision variables: s’j determines the service start time at customer j as well as 

the travel cost of arc (i, j), and xij represents whether arc (i, j) is used in the solution (xij = 1) or 

not (xij = 0). The objective function (Eq. (6)) minimizes the reduced cost of a single vehicle 

route including the fixed cost for that vehicle and the travel cost on the arcs with early and late 

arrival penalty costs. The capacity constraint (Eq. (7)) keeps the cumulative demand within 

vehicle capacity. Flow conservation constraints (Eq. (8)-Eq. (10)) specify that the route shall 

start and end at depot; while on the route, if the vehicle travels to a customer location h it must 

also travel from it. The soft time windows constraints (Eq. (11) and Eq. (12)) allow the arrival 

of the vehicle within the soft time window [a’i, b’i], but ensures that the service must start 
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after ai even if the vehicle arrives earlier than the service start time i.e. within [ai, b’i]. Another 

time window constraint (Eq. (13)) ensures that if the vehicle travels from i to j, service at j can 

not start earlier than that at i. Here, M is a large constant. Finally, the integrality constraint for 

the flow variables xij is represented by Eq. (14). 
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4. THE COLUMN GENERATION-BASED HEURISTICS 

 

The nature of the algorithm used for solving the subproblem determines the exact or heuristics 

characteristics of any column generation scheme even if the master problem is solved exactly. 

The ESPPRC subproblem is a NP-hard problem in the strong sense (Dror, 1994) even without 

early and late arrival penalties. Therefore, the basic idea of the column generation-based 

heuristics is to solve the subproblem using insertion heuristics, which can efficiently 

incorporate the arrival time dependent arc costs of the VRPSTW formulation. Figure 2 shows 

the complete flow chart for the column generation-based heuristics for the VRPSTW. The 

linear relaxation of the set partitioning master problem LP must remain feasible; therefore, the 

LP was initialized with n artificial columns equivalent to a solution where every customer is 

individually serviced by a dedicated vehicle. The costs of these routes provide the first set of 

values as well as the upper bounds of the dual variables π. Reduced costs based on these dual 

variable values is used in the insertion heuristics to generate routes of negative reduced costs, 

which are then used to augment the LP of the master problem. The set covering master 

problem is solved by replacing constraint (2) with (15), as linear programming relaxation of 

set covering type master problem is more stable than the set partitioning type (Desrochers et 

al., 1992).  
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To stabilize the column generation scheme convex combinations of current and previous dual 

variables are tried first, if the subproblem fails to provide a negative reduced cost column the 

weight of current dual variables is increased in steps. The subproblem and the master problem 
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are solved iteratively in cycles until a stopping criterion is achieved, such as maximum 

number of iterations. If the solution at hand is not integer a problem reduction step (as 

described in §4.2) is taken. 

 

 
Figure 2 Flow chart of column generation-based heuristics 

 

4.1 Insertion Heuristics Subproblem 

The Push Forward Insertion Heuristics (PFIH) (Solomon, 1987) is one of the earliest 

sequential route-building algorithms for the VRPTW. It has been used in the initialization of 

many other route-improving heuristics and metaheuristics such as in a GA for VRPHTW, 

Alvarenga et al. (2007) used its stochastic version (SPFIH), in which the first customer of a 

route is chosen randomly and then remaining unrouted customers are inserted in this route 

until the capacity or time windows constraints forbid any further insertion. This study utilizes 

a modified version of SPFIH that incorporates the early and late arrival penalties as well.  
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schedule at the customer ip that may change the values of 
ri

s , 
ri

w  and 
ri
l , p ≤ r ≤ m. As shown 

in the Figure 3, the effects of insertion of a customer need to be evaluated from its point of 

insertion till the end. For the VRPSTW, the conditions us  ≤  ub′  and 
ri

s + 
ri

PF ≤ 
ri

b′  provide 

the feasibility criteria for a feasible insertion position of the customer u.  

 

Similar to Solomon (1987), the best feasible insertion place is determined using Eq. (16) for 

each unrouted customer u; however, an additional term is added to consider the changes in 

early and late arrival penalties for the customers: ir, p+1 ≤ r ≤ m-1 in order to find the 

insertion cost (Eq. (17)) of each unrouted customer u. As in this study, the insertion heuristics 

is used as the subproblem, reduced costs are used to find the insertion cost of the customer u 

between ip-1 and ip. Finally, the best customer u
*
 to be inserted in the route, is obtained using 

Eq. (18).  
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Figure 3 Effect of customer insertion on early and late arrival penalties 
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cost route for only one vehicle and returns the most negative reduced cost column; whereas, 

the insertion heuristics subproblem actually solves the whole VRPSTW instance considering 

reduced costs. This helps in ensuring that columns containing all customers are available in 

the master problem LP. Also to accelerate the column generation scheme the insertion 

heuristics subproblem is forced to stop earlier if a fixed number (set to 100) of negative 

reduced costs columns found during its execution.  

 

4.2 Problem Reduction 

Three stopping criteria were used in the column generation-based heuristics viz. maximum 

number of iterations, same values of dual variables in two consecutive iterations and no 

negative reduced cost column returned by the subproblem. At the end of column generation 

procedure, if the solution is fractional or contains more than one single-customer routes, a 

problem reduction step was taken thereby extracting routes depending on the values of yp and 

formulating a smaller instance. The following procedure is used in this stage. 

 

Step 1: Optimize the set covering master LP problem containing all present 

columns and select a column with the maximum yp value; add all its 

customers to temporary solution S’ 

Step 2: Remove all columns from master LP problem containing any of the 

customers in temporary solution S’ 

Step 3: Check  

if | C | > 25, | S’| ≥ (| C | ) x 0.5  go to step 4 else go to step 1 

if | C | < 25, | S’| = (| C | )  go to step 4 else go to step 1 

 

Step 4: If number of single customer routes in S’ > 1, remove all single 

customer routes from S’ 

Step 5: Reformulate the reduced VRPSTW instance from customer set C’ = C / 

S’ and repeat the column generation-based heuristics of Figure 2. 

 

No proper branch and bound scheme can be developed due to the use of heuristics. This 

approach can be seen as branching on various variables at a time. The cycle of column 

generation scheme and problem reduction continues until the integer solution of the original 

instance with at most one single-customer route is obtained. 

 

 

5. GENETIC ALGORITHM HEURISTICS (GA) 

 

As discussed earlier (in §2), typically, Genetic Algorithms (GA) have been used to obtain 

good solutions for the VRPSTW. Therefore, this study also adopts a GA for the VRPSTW to 

compare the results of the column generation-based heuristics in order to identify its 

practicality. In GA, initialization and size of population, genetic operators (crossover and 

mutation), elitism and maximum number of generations (iterations) play important roles in the 

heuristics quality. The GA, used for comparison, has been evaluated for its satisfactory 

performance by comparing it with exact VRPTW solutions under slightly different soft time 

windows settings (Qureshi et al., 2009).  

 

5.1 Chromosome Representation and Population  

The same modified Stochastic Push Forward Insertion Heuristics (SPFIH) was used to get the 

initial population for the GA as was used in the subproblem of column generation-based 
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heuristics (as described in §4.1) with only exception that the true arc costs (not the reduced 

ones) were used. The population was consisted of 200 integer valued individuals or 

chromosomes, each representing a complete feasible VRPSTW solution obtained from the 

modified SPFIH. Figure 4 shows such a chromosome for a twelve customer instance and its 

interpretation in the GA for new vehicles due to presence of a depot gene or due to the 

violation of capacity or time window constraints. Two continuous variables (qsum0 = 0 and 

twroute0) for each vehicle are initiated (as per Eq. (19)) and are updated every time that 

vehicle travels from i to j according to the Eq. (20) and Eq. (21).  
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Figure 4 The VRPSTW chromosome coding and interpretation in GA  
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To ensure that each iteration of the GA always finds a new or maintains the best solution 

found so far, elitism was adopted thereby keeping best 2% individuals of the current 

population in the population of next generation.  

 

The maximum number of iteration (generations) was kept as 25000, and to reduce the effects 

of the initial solution, the population was re-generated after every 500 generations. During this 

step, a new population was generated by keeping 2% elite individuals of the current 

population and the remaining 98% was generated using the same modified SPFIH algorithm 

as that used in the initialization. Therefore, along with the GA, an implicit comparison of the 
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proposed column generation-based heuristics, with roughly 9800 runs (50 re-generations x 

0.98 x size of initial population) of the modified SPFIH, was also made as a byproduct.  

 

 

6. COMPUTATIONAL RESULTS AND DISCUSSION  

 

The algorithms were implemented in MATLAB, and were run on a computer with 2.41 GHz 

AMD Athlon with 64 x 2 dual core processors with 2 GB of RAM. The performance of 

column generation-based heuristics was evaluated using some of the R1-type Solomon’s 

benchmark instances (Solomon, 1987). Customers are located randomly in these instances, 

and each instance contains 100 customers; for each of the instances ten runs of column 

generation-based heuristics and GA were made and the results of the best run are given in this 

paper. 

 

Table 1 provides the solution results obtained using column generation-based heuristics and 

GA heuristics. Col. (1) shows the test instance; Solomon’s benchmark instances are originally 

developed for the VRPHTW, therefore a suffix STW is added to elaborate the fact that soft 

time windows have been used in the test instances. Number of vehicles required and 

cumulative sums of their operation times, early arrival times and later arrival times in the best 

solution found in column generation-based heuristics (in minutes), are reported in Col.(2)-

Col.(5). Col.(6)-Col.(9) contains the corresponding figures for the GA heuristics. The 

operation time for a vehicle includes the time required to travel from depot to the first 

customer, between the customers on route and returning back to depot.  

 

Table 1 Results of column generation-based heuristics and GA heuristics 

Instance 
Column Generation-based 

Heuristics 

Genetic Algorithms (GA) 

Heuristics 

 Veh. OT EAT LAT Veh. OT EAT LAT 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

R101-100-STW 13 2677 36.1 474.1 14 2825.2 35.8 467.8 

R102-100-STW 12 2572.1 27.3 178.7 13 2640.0 82.4 263.6 

R103-100-STW 11 2382 29.0 60.8 12 2580.8 53.9 51.8 

R104-100-STW 10 2198.9 49.3 2.0 10 2123.9 8.2 0.0 

R105-100-STW 12 2566.3 0.3 293.5 13 2603.4 20.8 115.5 
Veh. = number of vehicles      OT = operation time     EAT = early arrival time     LAT = late arrival time   

 

Solutions obtained in column generation-based heuristics contain less number of vehicles and 

thus have less operation time as compared to the solutions obtained in GA heuristics except in 

R104-100-STW, where the number of vehicles is the same, and GA heuristics results in less 

operation time. The early arrival time and late arrival time does not show any trend. The 

solution costs and the computation time required by the two heuristics are reported in Table 2. 

The solution cost is composed of fixed vehicle cost, operation cost, early and late arrival 

penalty costs. The vehicle operation cost (VOC) of 14.02 yen/minute is taken; while the fixed 

cost for a vehicle is set to 10417.5 yen. The unit early arrival penalty cost is assumed equal to 

the VOC; whereas, the unit late arrival penalty is taken as five times that of the VOC. These 

unit cost values are based on a survey of Japanese logistics companies and most commonly 

used in the city logistics-related literature (for example, see Taniguchi et al., 2001; Yamada et 

al., 2004; Ando and Taniguchi, 2006; Duin et al., 2007).  
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A very prominent trend that can be observed from the data of Table 2 is that of very low 

computation time requirement of the column generation-based heuristics as compared to the 

GA heuristics. In just over a quarter of computational effort, an average reduction of 4.5% in 

solution cost was obtained. If both solution cost and computation time are considered 

together, the overall better performance of column generation-based heuristics is fairly evident 

as shown in Figure 5. The maximum cost reduction of 10.2% was obtained in R102-100-STW 

and the maximum computation time saving was observed in R105-100-STW, in which it 

produced a comparable solution in less than one-fifth of the computation effort required by the 

GA. In soft time windows environment, always there exists a trade-off between the number of 

vehicles and delays (late arrival time). Table 1 shows that the column generation-based 

heuristics has favored less number of vehicles and travel distance over the amount of the late 

arrival penalties in R105-100-STW, which has resulted in a nominal increase of 0.8% in the 

solution cost but a corresponding reduction in CO2 emissions is also obtained (Figure 6). 

However, in R104-100-STW, GA has produced an overall better solution consuming 2.38 

times more computation time. Most of the customers in R104-STW-100 have very wide time 

windows, which result in a large solution space. The search strategy in GA is global and it has 

more randomness, which help it to search larger solution spaces in an efficient way. Although, 

the SPFIH provides randomness and stochastic character in the column generation-based 

heuristics, it still possesses some characteristics of structural search due to the utilization of 

dual variables, which may have affected its performance in large scattered solution space.   

 

Table 2 Solution costs and computation times 

Instance Solution Cost (JPY) Computation Time (seconds) 

 CGH GAH Difference 

(%) 

CGH GAH Ratio 

(1) (2) (3) (4) (5) (6) (7) 

R101-100-STW 192680 204729 -5.9 2998.18 11421.70 0.26 

R102-100-STW 159960 178054 -10.2 2838.40 7180.98 0.40 

R103-100-STW 138637 151560 -8.5 2687.04 6406.65 0.42 

R104-100-STW 121815 120047 1.5 1573.35 13153.60 0.12 

R105-100-STW 167548 166295 0.8 2072.71 11305.40 0.18 
CGH = column generation-based heuristics       GAH = genetic algorithms heuristics     JPY = Japanese Yen 

Difference (%) = (Col.(3) - Col.(2))x100/ Col.(3)             Ratio = Col.(5)/ Col.(6) 
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Figure 5 Comparison of solution costs and computation times 
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To capture the environmental aspects of the solutions produced by the column generation-

based and GA heuristics, CO2 emissions are compared in this paper (Figure 6). These 

emissions are estimated using relationships (equations) described in a report by National 

Institute for Land and Infrastructure Management, Japan (NILIM 2003) assuming light 

delivery vehicles using diesel fuel. Furthermore, as the Solomon’s benchmark instances are 

based on Euclidean distances, an average speed of 20 km/h is assumed on all arcs. As 

compared to GA heuristics, in almost all instances the column generation based heuristics 

produced environmentally better results except in R104-100-STW, for which it produced an 

overall inferior solution. The reduction in the CO2 emissions averaged at 4% in all instances.  

 

0

0.1

0.2

0.3

0.4

0.5

0.6

R101-100-STW R102-100-STW R103-100-STW R104-100-STW R105-100-STW

C
O

2
 (

to
n

)

CO2-GAH (ton) CO2-CGH (ton)

 
Figure 6 Comparison of CO2 emissions  

 

 

7. CONCLUSIONS AND FUTURE RESEARCH  

 

Considering its efficiency for the hard time windows and taking advantage of the flexibility 

offered by the column generation scheme to work with variety of subproblems, even the 

heuristics ones, this paper presented a column generation-based heuristics for the Vehicle 

Routing and scheduling Problem with Soft Time Windows (VRPSTW). The dual information 

(i.e., shadow prices) from master problem guided the heuristic subproblem and it was able to 

provide negative reduced cost columns of good quality. This resulted in a rapid decrease in the 

objective function value, which saved considerable computation time as compared to the slow 

convergence of a traditionally used genetic algorithms (GA) heuristics. Computational 

evaluations on Solomon’s benchmark instances also confirmed this, and on average, the 

column generation-based heuristics was able to save three-forth of the computation time 

required by the simple GA heuristics. The column generation-based heuristics was able to 

produce better solutions, both economically and environmentally, in most instances and very 

closely comparable solutions in other instances. At the end of the column generation 

procedure, to obtain a feasible integer solution, a problem reduction strategy has been used. 

Although the strategy worked well yet it is too coarse (i.e., a sudden reduction of instance size 

to half), this may become a significant weakness while attempting even larger instances (>100 

customers). Therefore, a possible future research can be towards improving this strategy, 

evaluating their effects on solution quality and computation of the proposed heuristics.  
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