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Abstract: The identification and ranking of hazardous road locations are important parts of 
road safety improvement programs. This paper describes the application of Empirical Bayes 
(EB) approach for identifying and ranking hazardous junctions. Accident, traffic, and junction 
geometric/environment data from 203 four-legged and 186 three-legged signalized junctions 
across western part of Singapore were collected. Accident prediction models were developed 
and safety of the junctions was estimated. After that, hazardous junctions were identified 
using probability of selecting the worst site concept and then ranked using PSI  (potential for 
safety improvement) and LH  (level of hazard) criteria. A total of 38 junctions were found as 
hazardous. The result shows that the use of PSI  criterion is more favorable than LH  
criterion as it is better able to detect the top hazardous junctions with the largest number of 
accidents in the study period.  
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1. INTRODUCTION 
 
It is widely accepted that an effective way to improve road safety is through road safety 
improvement programs. Such programs involve identification of hazardous sites, 
prioritization/ranking of hazardous sites for treatment, diagnosis of safety problems, selection 
and prioritization of feasible treatments and studying the effect of applied treatments, with all 
aspects to be considered within the limitation of available budget. 
 
In a road safety context, a hazardous site is commonly defined as any site that exhibits an 
accident potential that is significantly high when compared with some norm or average 
accident potential which is established from other sites with similar characteristics. The 
identification of hazardous sites is important so as to avoid wasting resources due to treating 
the sites that are wrongly identified as unsafe sites and leaving the truly hazardous sites 
untreated. The process of identification is usually followed by ranking the hazardous sites 
according to pre-specified criteria to measure the hazard level given limited budget. In this 
way, the authorities can determine which sites need to be prioritized for safety treatment.  
 
Various methods are available to identify and rank hazardous sites. Commonly, the hazardous 
sites are selected simply by ranking all the sites according to the hazard level where high-risk 
sites are assigned smaller ranks and vice versa. The worst sites are then selected from the 



Journal of the Eastern Asia Society for Transportation Studies, Vol.8, 2010 

outcome of the ranking; the sites with smaller ranking are regarded as the more hazardous 
sites. Alternatively, a certain limit for accident count or accident rate is set then hazardous 
sites were selected based on that limit. In this context, a site is defined as hazardous if its 
observed accident count or accident rate or both exceed the preset limit. However, it is 
undoubtedly that this method is very sensitive to random variation in accident counts and to 
the regression-to-mean problem (Hauer, 1986; Elvik, 1997). Basically, the method will 
(incorrectly) identify hazardous sites as those sites which have high accident counts or 
accident rates. 
 
Another approach is to select hazardous sites using a critical threshold that is chosen in such a 
way that it is exceeded by only a small proportion of the sites. Thus, a site is said to be 
hazardous if its observed accident count or accident rate exceeds this critical threshold. An 
example of this kind of method is the rate-quality control method described in Stokes and 
Mutabazi (1996). McGuigan (1981) proposed ranking sites according to their potential for 
accident reduction (PAR), which is the difference between the reported (actual) number of 
accidents at a site and the expected number of accidents at sites with similar characteristics. 
Soon after, McGuigan (1982) postulated that using PAR in ranking hazardous sites is more 
likely to maximise the cost-effectiveness of a road safety improvement programme than using 
accident count or accident rate. On the other hand, Maher and Mountain (1988) concluded 
that using accident count as ranking criterion may perform as well as or better than using PAR 
due to inaccuracy in the estimation of expected number of accidents at a site which is required 
in the PAR method. 
 
After safety estimation by Empirical Bayes (EB) approach has become popular, EB estimate 
has been used as a criterion for the purpose of identification and ranking hazardous sites. 
Hauer (1996) used the EB safety estimate directly to rank sites. Persaud et al. (1999) used it 
in a method called potential for safety improvement (PSI). This method is quite similar to the 
PAR method, except that the EB safety estimate is used instead of accident count. Here, PSI 
is estimated as the difference between the EB safety estimate and what is normal for similar 
sites. Saccomanno et al. (2001) defined hazardous site as a site where the observed number of 
accidents exceeds either the accident prediction (Poisson) model estimate or EB estimate by at 
least one standard deviation. They concluded that the EB estimate has yielded fewer 
hazardous sites than accident prediction (Poisson) model. 
 
This paper describes the application of EB approach for identifying and ranking hazardous 
signalized junctions in Singapore. Accident prediction models for four-legged and three-
legged signalized junctions were developed using Negative Binomial (NB) regression model. 
The models were thus used in estimating safety of the junctions using EB approach. The 
hazardous junctions were identified using probability of selecting the worst site concept and 
then ranked according to PSI  (potential for safety improvement) and LH  (level of hazard) 
criteria. 
 
 
2. METHODOLOGY 
  
2.1 Accident Prediction Model 
 
Accident count is discrete, and hence does not follow the normal distribution. Thus, it cannot 
be modelled using ordinary linear regression model. Currently, there are a number of 
modelling approaches to deal with discrete count data. The more familiar approach is Poisson 
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regression model. However, it is sometimes the case that the Poisson regression model is not 
appropriate to model accident count data whenever there is large variability within the data. In 
this case, a NB regression model may be used as they can cater to the over-dispersion in the 
data. NB model assumes that the distribution in the number of accidents at a site is Poisson 
and the distribution of expected accident counts in the population is Gamma. 
 
If iY is an independent random variable that follows a NB distribution with expected value iµ
, then the probability function of iY is given by: 
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with α  being the dispersion parameter, and 0≥α . 
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The Poisson regression model can be regarded as a limiting model of the NB regression 
model as α  approaches zero. However, it is noted that the NB model does not fit well if the 
data are under-dispersed as it requires that the variance is greater than the mean. The 
appropriateness of using NB model over Poisson regression model can be determined by the 
statistical significance of an estimated coefficient α  which is a parameter related to the 
degree of over-dispersion. When α  is significantly larger than zero (as measured by the t-
statistic), then the suitability of the NB regression model is confirmed. Otherwise, the Poisson 
model would prevail (Poch and Mannering, 1996). 
 
Evaluation of the goodness of the fit between the observed values iy  and the fitted values iµ̂  
for Poisson and NB regression models can be assessed by a number of statistics. Two well 
known ones are the Pearson 2X and Scaled Deviance 2G  statistics. Here the models are 
assumed to be nested, with the larger model having the greater number of parameters. These 
statistics follow 2χ  distribution with (n-p) degrees of freedom where n is the number of data 
points (observations) and p is the number of estimated parameters.  
 
The Pearson 2X statistic is defined as sum of squares of standardised observations, while the 
Scaled Deviance G2 can be defined as twice the logarithm of the ratio of the likelihood of the 
data under the larger model, to that under the smaller model. The Pearson 2X  and Scaled 
Deviance G2 statistics for the Poisson regression model are: 
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For the NB regression model: 
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A model passes the goodness of fit criteria when the values of Pearson 2X  and Scaled 
Deviance G2 statistics are greater than or equal to the value of 2χ  distribution with (n-p) 
degrees of freedom for a certain confidence level (in this case, 95%). 
 
2.2 EB Approach for Safety Estimation 
 
The safety of an entity is defined as ‘the number of accidents by kind and severity, expected 
to involve or to occur at the entity, per unit of time, in a certain period’ (Hauer, 1992 and 
1997). Hauer (1997) postulated that the count of accidents (K) observed at an entity is a 
biased estimate of its expected number of accidents (m), and proposed the EB approach for 
estimating the safety of an entity. Safety estimation in the EB approach is based on an entity’s 
traits (such as gender, age, traffic or geometry) and the entity’s historical accident records. 
Thus, it requires information on mean and variance of the safety for a reference population of 
similar entities.  
 
However, there were inherent difficulties in defining the reference population in EB method. 
There is a problem when a sizeable number of reference population does not exist. Even if the 
number of entities is large enough, it does not mean that the reference population will be 
easily defined. Elvik (1988) rationalized that a group of entities cannot form a population 
unless they are sufficiently similar among themselves that the accident counts defined for the 
group of entities are able to be fitted by a probability distribution. Hence, to overcome the 
difficulties in defining the reference population, Hauer (1997) suggested using multivariate 
modeling method to estimate the safety of the reference population and this approach was 
adopted in this research.  
 
To derive the EB model, Hauer (1997) started with introducing two variables namely m (the 
expected number of accidents of an entity occurring within a group of similar entities during a 
specified time period) and K (historical accident counts of the entity in a specified period). Let 
the mean and variance of m in the reference population (group of entities) be ( )mE  and 

( )mVar . Here, ( )mE  is taken as the safety of the population. Where information on the 
historical accident counts of an entity is not available, ( )mE  is also the best estimate of safety 
m of the entity. However, if such information is available then the best estimate of safety m of 
the entity that has K accidents is given by ( )KmE . In this regard, ( )KmE  and ( )KmVar  
respectively denote the mean and the variance of m in the subpopulation that recorded K 
accidents.  
 
The probability distribution ( )Kmf  was built by assuming that the probability distribution of 
m  in the entities of the reference population is described by a Gamma probability density 
function, which is denoted by ( )mg . That is, for 0≥m , 
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The parameters a and b are related to mean ( )mE  and variance ( )mVAR  as follows: 
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( )mE  is estimated by using the result of accident prediction model where the expected 

accident count K is given by µ , which is similar to ( )mE , with variance equal to ( )µVar . 
Hauer (1992) showed that ( ) ( ) ( )mVarmEVar +=µ . For the case of accident prediction model 
that is built using NB regression model then ( ) ( )2mEmVar α=  because the variance of the 
NB regression model is given by ( ) 2µαµµ +=Var  and also ( )mE=µ . Here, α  is the 
dispersion parameter of the NB model and α1=b . Using Bayes’ theorem and assuming that 
the accident count K is Poisson-distributed, the probability distribution for ( )Kmf  is thus: 
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It has to be noted that the EB method relies upon assumption that the count of accident at an 
entity K is Poisson-distributed while many researchers have indicated that accident counts 
need not always be Poisson-distributed (Nicholson, 1985; Ng et al, 1995). However, 
Kusumawati (2008) examined 1186 samples of historical accident count sequences and found 
that  only 8.6% of the samples were rejected to be Poisson-distributed although the remaining 
samples that could not be rejected as Poisson-distributed need not always had index of 
dispersion equal to one (as required by Poisson distribution).    
 
2.3 Identification and Ranking of Hazardous Junctions 
 
The identification of hazardous junctions is based on the probability of selecting a site with 
accident potential exceeding what is normal for sites similar to the site being investigated. The 
accident potential of a site is represented by the EB safety estimate ( )KmE  while the normal 
accident potential is represented by the average accident potential of junctions similar to the 
junction being investigated, which is the result of safety estimation using accident prediction 
model ( )mE .   
 
Given a site with accident potential represented by ( )KmE  - mean of the posterior 
distribution, and a threshold value represented by ( )mE  - mean of the prior distribution. Here, 
( )KmE  or m̂  is the EB estimate. The site is identified as hazardous if there is a significant 
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probability that its accident potential exceeds the value that is normal for similar sites in the 
reference population. So, mathematically, a site is identified as hazardous if: 
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where δ  represents the minimum accepted confidence level, which can be any value smaller 
than one. In this case, the value of  δ  is taken as 0.95. 
 
After the hazardous junctions are identified, next step is to rank the junctions for priority 
treatment. In this case, two criteria that make use of the EB estimate were considered for 
ranking the hazardous sites for treatment priority. The first one is to rank the junctions 
according to the potential for safety improvement ( )PSI , which is defined as the positive 
difference between EB estimate ( )KmE  and the normal accident potential for similar sites in 
the reference population ( )mE : 

 
( ) ( )mEKmEPSI −=   (13) 

 
All hazardous sites will have a PSI  value greater than zero though not all sites having PSI  
larger than zero are necessarily hazardous.  
 
The level of hazard ( )LH  is another criterion that sounds logical to be used in ranking the 
hazardous sites. It is a ratio, instead of difference, of MEB estimate ( )KmE  to the normal 
accident potential for similar sites in the reference population ( )mE . The level of hazard ( )LH  
is defined as: 

 
( )
( )mE

KmE
LH =           (14) 

 
As in the PSI method, all hazardous sites will have an LH  value greater than one though not 
all sites having LH  greater than one are necessarily hazardous. 
 
 
3.  MODEL DEVELOPMENT 
 
3.1 Data 
 
In building up the database, on-site visits were made to hundreds of signalized junctions in the 
western part of Singapore over the period of 2003 up to mid 2004. At each site, information 
was captured on the geometric lay-out as well as the operational features. These junctions 
were also checked against various records to ensure there were no major 
geometric/operational changes during the part of the study period (1999-2003). Altogether, a 
total of 203 four-legged signalized junctions and 186 three-legged signalized junctions were 
assembled in the final junction sample. Junction geometric and operational data were obtained 
from field data collection. At first, twenty seven types of geometric and operational variables 
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were collected, however some variables were omitted in modelling stage due to lack of data 
variation or multicollinearity between variables.  
 
The road traffic accident data were extracted from a computerised accident database obtained 
from Singapore Traffic Police Department (TPD). It should be noted that the TPD accident 
records cover only reported fatal and injury accidents. Therefore, any minor accident not 
incurring any injury to person or involves only damage to property is not reflected in the 
accident database because such accidents may be settled between the accident parties, and are 
usually not reported to the TPD. For the purpose of this research, the accident data were 
extracted using SAS application software package in order to obtain accident counts 
pertaining to respective junctions and all the available information related to the accidents. 
 
The traffic flow data were obtained from the Green Link Determining System (GLIDE) 
records. The GLIDE is an intelligent traffic control system that controls traffic signal and 
manages traffic on Singapore’s road network. Data obtained from GLIDE included junction 
layout, phase diagram that indicates the phase sequence, and traffic counts at 15-minute 
intervals for each approach lane of the junction. Traffic count data obtained from GLIDE, 
however, have some limitations. Firstly, data are recorded in the form of number of vehicles 
that passed a detector without classification by vehicle type. Secondly, the GLIDE detectors 
do not cover left-turn movements along the sliproads. Thirdly, a detector can at times be 
faulty due to various reasons and there would then be no traffic count data available for the 
affected lane(s).   
 
Despite the limitations, this research still relied on the GLIDE to obtain information regarding 
traffic flows at the study junctions as the GLIDE provides the only practical source of traffic 
flow data on an area-wide basis. It would be overly resource-intensive to manually collect the 
data at the junctions otherwise. A study by Naing (2004) showed that the average deviation of 
the GLIDE count data as compared to manual count data was –7.3% (under-counting by 
GLIDE) when motorcycles were included into the analysis and +3.3% (over-counting by 
GLIDE) when motorcycles were excluded from the manual counts. To correct for 
unavailability of counts at the sliproads, several models were developed to estimate traffic 
flows at the sliproads which consist of models for estimating the left-turn sliproad flows at 
four-legged signalized junctions, at middle leg of three-legged signalized junctions, and at 
minor leg (stem) of three-legged signalized junctions, respectively. The models were 
developed through simple regression analysis using manual traffic count data from Singapore 
Land Transport Authority (LTA) and from field studies by Chia (2004) and Leong (2004). 
The resulting models can be seen in Kusumawati (2008). 
 
Since the traffic flow data were collected only for 2004, estimations were done to obtain the 
data for other periods. Although it is desirable to find the specific growth rate applicable to 
each junction there was insufficient resources to calibrate the individual rates. It was assumed 
that all the junctions in study area had similar annual traffic growth rate corresponding to the 
annual growth rate of vehicle population in Singapore. A sensitivity analysis was then carried 
out to examine the impact of inaccuracy of the estimated traffic flow data on the developed 
models. It was found that varying traffic flow for four-legged signalized junctions by -30% to 
+30% of modelling value would result in expected accident number to change by between 
0.734 to 1.255 of its initial value whereas varying traffic flow for three-legged signalized 
junctions for the same numbers as the four-legged signalized junctions would result in 
expected accident number µ  to change by between 0.689 to 1.316 of its initial value. 
However, it was also found that the change of traffic flow value had some but lesser effect on 
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the outputs of EB methods. For example, varying the traffic flow in the four-legged signalized 
junctions model by -30% to +30% of the initial value of traffic would result an average 
change of 7% in the ( )KmE . Therefore, although the developed accident prediction models 
were sensitive to changes in traffic flow, their effects were moderated when their outputs were 
incorporated into the EB methods. 
 
3.2 Model Estimation 
 
The accident prediction models were developed based on time-aggregated accident counts 
data during 5-year (1999-2003) modelled period. The developed model takes the form: 
 

( ) ( )∑= iiG
sp eQQk βγµ          (15) 

 
where µ  equals to expected accident number during 5-year period; pQ and sQ  are total daily 

junction inflow in the primary and secondary direction, respectively; iG  equals to junction 
geometric/operational variables and k, γ , iβ ,  are the model parameters to be estimated. 
Table 1 presents the explanatory variables used for developing the accident prediction model. 
 

Tabel 1 Explanatory variables of the accident prediction models 
Explanatory variables Codes Types Coding, as applicable 

Daily junction inflow in 
the primary direction Qp Quantitative  

Daily junction inflow in 
the secondary direction Qs Quantitative  

Number of approach lanes NAPLN Quantitative  
Number of exit lanes NEXLN Quantitative  
Number of exclusive 
right-turn lanes RTLANE Quantitative  

Number of shared lanes SHLANE Quantitative  
Number of signal phases NPHASE Quantitative  

Classification of junction CLASS Qualitative 1 : if major junction 
0 : otherwise 

Sliproad  SLR Qualitative 1 : if sliproad present on all junctions legs 
0 : otherwise 

 NOSLR Qualitative 1 : if sliproad not present on all junctions legs 
0 : otherwise 

Median MED Qualitative 1 : if median present on all junctions legs 
0 : otherwise

 NOMED Qualitative 1 : if median not present on all junctions legs 
0 : otherwise 

Pedestrian crossing PEDCROSS Qualitative 1 : if pedestrian crossing present on all junctions legs 
0 : otherwise 

Downstream merger MERG Qualitative 1 : if downstream merger present on at least one junction leg 
0 : otherwise 

U-turn UTURN Qualitative 1 : if U-turn present on at least one junction leg 
0 : otherwise 

Red-light camera RLCAM Qualitative 1 : if red-light camera presents on at least one junction leg 
0 : otherwise 

Yellow box YBOX Qualitative 1 : if yellow box presents 
0 : otherwise 

Landuse CITY Qualitative 1: if junction is located in city area 
0 : otherwise 

 TOWN Qualitative 1 : if junction is located in town area 
0 : otherwise 
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The development of the accident prediction models was initiated by removing junctions with 
non-Poisson accident count sequence during the modelled period from the initial database for 
each kind of model. The examination of goodness-of-fit to Poisson distribution of the accident 
count sequence of every junctions were carried out using exact test (Nicholson and Wong, 
1993), likelihood test (Rao and Chakravarti, 1956), Kolmogorov-Smirnov test (Campbell and 
Oprian, 1979) and multinomial test (Cressie and Read, 1984). In this case, there were 32 four-
legged signalized junctions and 10 three-legged signalized junctions which had non-Poisson 
accident data sequences during the modelled period (1999-2003). These junctions were 
therefore removed from the database.  
 
Multivariate modelling was then carried out on the traffic flows and the geometric/ 
operational variables as presented in Table 1 using LIMDEP application software package. 
Variable selection was carried out using a backward elimination procedure whereby the least 
significant variable at 95% confidence level was progressively eliminated one by one from the 
model. This process was continued until all remaining variables were statistically significant 
to be retained in the model. It was found that CLASS and CITY were the only significant 
junction geometric/operational variables, and also NB was the more appropriate regression 
model over the Poisson regression model.  
 
The resulting four-legged signalized junctions model is: 
 

 ( ) ( )CITYCLASS
sp eQQ 649.0624.0434.0310137.1 −−×=µ       (16) 

 
The resulting three-legged signalized junctions model is: 
 

( ) ( )CITYCLASS
sp eQQ 496.1601.0523.0410706.1 −−×=µ       (17) 

 
Tables 2 and 3 presents the complete statistical aspects of the four-legged and three-legged 
signalized junctions models, respectively. The fit of the variance functions of the four-legged 
and three-legged signalized junctions models to the averages of models squared residuals are 
presented in Figures 1 and 2, respectively. Those figures show that the averages of squared 
residuals were clustered around the variance function which indicates a good fitting model. 

 
Table 2 Accident prediction model for four-legged signalized junctions 

( )( )CITYCLASSQQ spe 649.0624.0ln434.0779.6 −++−=µ       
Degree of freedom 165  

Pearson 2X  148.424 2
165,05.0χ  = 196 

Scaled Deviance 2G  1 93.253 2
165,05.0χ  = 196 

Variable Coefficient t-value P-value 
Constant c -6.779 -5.290 0.000 
ln(QptQst) 0.434 6.346 0.000 
CLASS 0.624 4.059 0.000 
CITY -0.649 -3.902 0.000 
Dispersion parameter α 0.416 6.646 0.000 

 
 
 
 



Journal of the Eastern Asia Society for Transportation Studies, Vol.8, 2010 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 Variance function of four-legged signalized junctions model 

 
Table 3 Accident prediction model for three-legged signalized junctions 

( )( )CITYCLASSQQ spe 496.1601.0ln523..0676.8 −++−=µ  
Degree of freedom 167  

Pearson 2X  167.513 2
167,05.0χ  = 198.2 

Scaled Deviance 2G  178.399 2
167,05.0χ  = 198.2 

Variable Coefficient t-value P-value 
Constant c -8.676 -5.311 0.000 
ln(QpQs) 0.523 5.869 0.000 
CLASS 0.601 2.809 0.005 
CITY -1.496 -3.150 0.002 
Dispersion parameter α 0.616 5.357 0.000 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 2 Variance function of three-legged signalized junctions model 
 
 
4. IDENTIFICATION AND RANKING OF HAZARDOUS JUNCTIONS  
 
The identification of hazardous junctions were based on a criterion that there is a significant 
probability that its accident potential exceeds the value that is normal for similar sites in the 
reference population. In this case, the accident potential of a junction is represented by 
( )KmE , which was computed using the method presented in Section 2.2 based on the 
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accident prediction model of the junction as given in Equations 16 or 17. The accident 
potential that is normal for similar junctions in the reference population is represented by 
( )mE , as obtained from the accident prediction model. Equation 12 was then used to identify 

the hazardous junctions in the study area based on 1999-2003 accident data. The methods 
identified a total of 38 junctions as being hazardous based on the criterion that the probability 
of ( )KmE  exceeding ( )mE  is greater than 0.95, which consisted of 23 four-legged signalized 
junctions and 15 three-legged signalized junctions. The hazardous junctions are listed in Table 
4.  
 

Table 4 List of hazardous junctions 
No ID 20031999−K  ( )mE  ( )KmE  ( ) ( )( )mEKmEP >  20062004−K  

1 X69 35 9.775 30.021 1.000 18 
2 X89 15 4.204 11.072 1.000 14 
3 X113 47 11.564 40.901 1.000 19 
4 X153 43 18.862 40.271 1.000 9 
5 T4 23 5.329 18.873 1.000 11 
6 T9 19 3.670 14.297 1.000 4 
7 T61 11 2.366 7.486 1.000 8 
8 X117 27 13.082 24.839 0.999 12 
9 X158 32 15.983 29.906 0.999 21 

10 X188 18 7.001 15.189 0.999 12 
11 X145 10 2.341 6.119 0.998 5 
12 X146 13 4.268 9.854 0.997 4 
13 X177 13 4.421 9.979 0.997 3 
14 T157 10 2.826 7.382 0.997 2 
15 X107 16 6.574 13.476 0.996 6 
16 T101 11 3.558 8.668 0.996 0 
17 T67 5 0.358 1.195 0.993 0 
18 X9 25 14.373 23.477 0.990 9 
19 X27 7 1.383 3.435 0.989 9 
20 T91 8 2.366 5.707 0.988 2 
21 T107 21 11.819 19.891 0.986 8 
22 X94 9 2.929 6.263 0.985 2 
23 X76 21 11.904 19.472 0.983 3 
24 T60 8 2.674 5.988 0.982 0 
25 X24 23 13.937 21.667 0.978 5 
26 T12 10 4.186 8.375 0.978 6 
27 X121 21 12.408 19.605 0.976 15 
28 X181 11 4.834 8.952 0.975 7 
29 X115 17 9.383 15.446 0.974 7 
30 T130 17 9.649 15.941 0.973 10 
31 X39 12 5.676 10.118 0.972 5 
32 X11 26 16.979 24.881 0.968 14 
33 T32 7 2.491 5.220 0.965 2 
34 T7 6 1.860 4.070 0.963 3 
35  T92 5 1.204 2.820 0.963 2 
36 T20 8 3.303 6.452 0.960 3 
37 X178 11 5.490 9.322 0.954 4 
38 X88 9 4.001 7.124 0.953 9 
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The hazardous junctions were then ranked according to their PSI  and LH  values as 
explained in Section 2.3 and the result is presented in Table 5. 
 

Table 5 Rank of hazardous junctions 
No ID 20031999−K  20062004−K  PSI  LH  Rank by PSI   Rank by LH   
1 X69 35 18 20.246 3.071 3 6 
2 X89 15 14 6.868 2.634 16 7 
3 X113 47 19 29.337 3.537 1 3 
4 X153 43 9 21.410 2.135 2 20 
5 T4 23 11 13.544 3.541 5 2 
6 T9 19 4 10.627 3.896 7 1 
7 T61 11 8 5.120 3.164 21 5 
8 X117 27 12 11.758 1.899 6 25 
9 X158 32 21 13.923 1.871 4 26 

10 X188 18 12 8.187 2.169 9 18 
11 X145 10 5 3.779 2.614 23 8 
12 X146 13 4 5.586 2.309 19 14 
13 X177 13 3 5.557 2.257 20 15 
14 T157 10 2 4.556 2.612 25 9 
15 X107 16 6 6.902 2.050 15 22 
16 T101 11 0 5.110 2.436 22 11 
17 T67 5 0 0.838 3.343 37 4 
18 X9 25 9 9.104 1.633 8 35 
19 X27 7 9 2.051 2.483 34 10 
20 T91 8 2 3.341 2.412 29 12 
21 T107 21 8 8.072 1.683 10 31 
22 X94 9 2 3.334 2.138 30 19 
23 X76 21 3 7.568 1.636 13 34 
24 T60 8 0 3.314 2.239 31 16 
25 X24 23 5 7.730 1.555 12 37 
26 T12 10 6 4.189 2.001 28 23 
27 X121 21 15 7.198 1.580 14 36 
28 X181 11 7 4.118 1.852 26 27 
29 X115 17 7 6.064 1.646 17 32 
30 T130 17 10 6.292 1.652 18 33 
31 X39 12 5 4.443 1.783 24 28 
32 X11 26 14 7.902 1.465 11 38 
33 T32 7 2 2.730 2.096 36 21 
34 T7 6 3 2.210 2.188 35 17 
35 T92 5 2 1.616 2.342 38 13 
36 T20 8 3 3.149 1.953 32 24 
37 X178 11 4 3.832 1.698 27 30 
38 X88 9 9 3.123 1.780 33 29 

 
 
5. ANALYSIS 
 
The ( )KmE  in Table 4 represents the expected number of accidents that will occur per 5 years 
for a certain junction assuming constant accident rate and no treatment applied. The ( )mE  
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represents the normal expected number of accidents that will occur per 5 years for a group of 
similar junctions in the reference population. A 3-year accident data of year 2004-2006 (

20062004−K ) was then used to validate whether it is true that the junctions were truly hazardous 
by comparing whether the 20062004−K  for every junctions were indeed larger than their 
respective ( )mE  that were already converted into the expected number of accidents per 3 
years. It turns out that there were 6 junctions (X24, X76, X153, T60, T67, T101) out of the 38 
hazardous junctions listed in Table 4 which had 20062004−K  smaller than their respective ( )mE . 
Thus, since only 3 years data were available for validation, it cannot be concluded yet that the 
6 junctions were mistakenly identified as hazardous. It is possible that in the next two years 
(after 2006) the junctions would have total number of accidents exceeded their ( )mE . 
However, when this research was completed, the accident data for 2007 and 2008 were not 
yet available.    
 
After the hazardous junctions were identified, the junctions were ranked for remedial 
treatment due to constraint in budget for treatment. Nevertheless, one should not expect that a 
treatment can bring a junction into a zero accident state. The reason is that road traffic 
accidents are random; they are influenced by pure random variation as well as systematic 
random variation. Systematic variation, which is attributable by various causal factors can be 
controlled, however the pure random variation cannot be controlled; as long as there are 
exposures (vehicles), accidents shall occur. Thus, the most sensible approach is to bring the 
number of accidents at a junction back to normal condition which is representative for all 
similar junctions in the reference population.  
 
The PSI  and LH  criteria used in this research is based on prioritizing junctions according to 
safety benefit, in terms of reduction in the number of accidents expected to occur in future 
period, that can be obtained by treating a certain junction. In the PSI  criterion, the junctions 
are ranked according to the difference in the number of accidents expected to occur at a 
certain junction with the ‘normal’ number of accidents expected to occur in similar junctions 
in the reference population. However, by using the PSI  criterion, a junction with a relatively 
low number of expected accidents can never be prioritized for treatment though the normal 
expected accidents for the similar junctions in the population is much lower. On the contrary, 
the LH  criterion is able to detect such junction as it compares ratio of the number of 
accidents expected to occur at a certain junction to the ‘normal’ number of accidents expected 
to occur in similar junctions in the reference population. This situation can be seen, as an 
example, for T-61 junction. It is shown in Table 5 that the junction was ranked as number 21 
by using the PSI  criterion but it was ranked as number 5 by using the LH  criterion. 
Nevertheless, it seems that treating a junction with higher expected number of accidents is 
more realistic than treating a junction with lower expected number of accidents. 
 
Comparing the ranking results of top 5 and top 10 hazardous junctions using both criteria, the 
PSI  criterion was able to detect more number of accidents that occurred in 2004-2006. The 
total number of 20062004−K  for the top 5 and top 10 hazardous junctions using the PSI  criterion 
were 78 and 137, respectively while the same number using the LH  criterion were only 42 
and 90. Thus, use of the PSI  criterion was more favorable than the LH  criterion for ranking 
of hazardous junctions. 
 
Another criterion that can be used for ranking is accident cost. In this case, the accident cost 
for fatal accidents is larger than for serious injury accidents and the accident cost for serious 
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injury accidents is larger than for slight injury accidents. The junctions that shall be prioritized 
for treatment are the junctions with the largest accident cost among others. Nevertheless, the 
junctions with smaller accident cost may have higher level of hazard. This kind of method is 
not favored because it seems unfair to leave such junctions untreated thus exposing the road 
users to such high level of hazard for the simplistic reason that the road is less cost-effective 
to treat. 
 
The ranking of junctions presented in Table 5 should not be taken as a final one. Road 
authority may consider other factors before deciding the final ranking order. Those factors as 
mentioned in UK DOT (1986) include treatment difficulty, extent of the budget, availability 
of staff resources, construction program constraints, pressures by elected representatives, 
pressure by the public and media, emotional reaction by community, and geographical spread 
of remedial work load. After the road authority decides on the junctions to be treated, the next 
stage in road safety improvement programs is to do in-depth analysis to identify possible 
remedial measures for each problem encountered by the junctions.  
 
 
6. CONCLUSIONS 
 
The identification and ranking of hazardous junctions is very important towards being able to 
select the junctions for priority treatment, given limited budget. The identification method 
was developed by applying the EB approach to estimate safety. The ranking criteria were also 
set based on the EB estimates. Two criteria were proposed to rank the hazardous junctions, 
which were potential for safety improvement ( )PSI  and level of hazard ( LH ). 
 
Using the identification method, 38 hazardous signalized junctions were identified as 
hazardous. A 3-year accident data for year 2004-2006 ( 20062004−K ) was then used to validate 
whether it is true that the junctions were truly hazardous. It turns out that there were 6 
junctions out of the 38 hazardous junctions which had 20062004−K  smaller than their respective
( )mE . However, since only 3 years data were available for validation, it cannot be concluded 

yet that the 6 junctions were mistakenly identified as hazardous.    
 
The hazardous junctions were afterwards ranked according to their PSI  and LH values. The 
results showed that there was clear discrepancy in the ranking by PSI  and LH  criteria. The 
LH  criterion seems not to be able to detect the most hazardous junctions as well as the PSI  
criterion. Therefore, ranking of hazardous junctions based on PSI criterion is preferred. 
However, it is noted that the ranking presented here shall only be taken as preliminary ranking 
since there are other factors which may affect the final ranking order. 
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