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Abstract: This study is aiming to apply the revenue management (RM) concept, a common 
practice in air passenger operation, to the control of air cargo space.  The RM problem of air 
cargo differs from that of the air passenger in a lot of aspects.  The most important one is the 
uncertainty of air cargo space supply.  Meanwhile, the problem of denied boarding caused by 
supply uncertainty must be dealt with carefully.  A single-leg air cargo RM problem is 
tackled by a dynamic programming (DP) model to derive the optimal control policy and the 
expected revenue.  Numerical experiments based on the actual operational data of a 
Taiwanese international airline are performed to verify the model.  The result shows, to raise 
revenue by RM, it is critical for the airlines to accurately forecast and control the cargo space 
supply of a flight. 
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1. INTRODUCTION 
 
Due to world trade liberalization and global logistics operation, air cargo industry has been 
booming for the past decade, and recent forecasts also project a very promising development 
for the next two decades.  For example, one of the aircraft manufactures (Boeing, 2004) 
estimates that the average yearly growth rate is as high as 6.2%.   Particularly, for the traffic 
related to Asia markets, the growth rate will exceed the world average, and the share of global 
air cargo traffic will increase from 47.6% to 59.4% in 2023.  Meanwhile, revenue 
management (RM) has become a common practice in air passenger operation since American 
Airlines successfully applied several RM techniques to raise its revenue.  Nonetheless, 
revenue management has not become popular in air cargo industry.  This study is thus 
aiming to apply the RM concept to the control of air cargo space, so airlines can better utilize 
limited resource to increase their revenue. 
 
There exist several major differences between the revenue management of air cargo and that 
of air passengers.  The most important one is the supply uncertainty of air cargo space 
available on a flight.  When compared to the number of seats of a flight, the available cargo 
space of a flight is affected by many factors, which are uncertain by nature and cannot be 
determined in advance.  Moreover, the problem of denied boarding caused by supply 
uncertainty becomes a critical issue in the decision process of airlines. 
 
This study defines a single-leg air cargo RM problem, which take into account the supply 
uncertainty and the incurred penalty for denied boarding.  The problem is tackled by a 
dynamic programming (DP) model, which comprises the booking period as the stage and the 
available cargo space (in terms of tons) as the state.  Numerical experiments are performed 
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to verify the model and to examine the critical factors related.  Though market segmentation 
and price discrimination are not common in the air cargo industry, the test problems of the 
numerical experiment are designed based on the actual operational data of a Taiwanese 
international airline.  The results are helpful for the airlines to understand the special features 
of the air cargo industry and their impacts in terms of revenue management. 
 
This paper is organized as follows: in the next chapter, problem backgrounds are elaborated, 
and related previous researches are reviewed.  In addition to problem definition, the dynamic 
programming model is developed in the third chapter.  The numerical experiment together 
with the results of the sensitivity analysis are described in the fourth chapter.  Finally, the 
findings of this study are concluded in the fifth chapter. 
 
 
2. PROBLEM BACKGROUNDS AND PRIOR RESEARCHES 
 
The development of RM theories and techniques has been undertaken for a long time.   
Particularly, after the implementation at American Airlines (Barry et al., 1992) aiming to cope 
with the new business environment in the post-deregulation era, revenue management has 
become a common practice in the airline industry.  Moreover, the application of revenue 
management has been extended to several other industries, such as rail, car rental, hotel, and 
many other areas of manufacturing and service industries.  However, how to realize the basic 
concept of revenue management, “selling the right seat to the right customer at the right 
price,” remains to be a challenge. 
 
The employment of overbooking, an industry practice for decades, could be thought as the 
beginning of the application of RM techniques in the aviation industry.  Prior researches in 
this area can be found in the paper by Rothstein (1985).  However, it is later realized that, to 
compete with the rising low-cost carriers after the Deregulation, major carriers must carefully 
segment their markets, as the characteristics of the customers are diverse.  Thus, the same 
cabin class is differentiated as many kinds of products, called fare classes.  In the nested 
reservation scheme, sophisticated approaches with various terms and conditions are 
developed to implement the seat inventory control policy, which makes the accept/deny 
decision for the booking request of a specific fare class. 
 
Most early seat-inventory control researches rely on the following six assumptions: 1) 
sequential booking classes; 2) low-before-high fare booking arrival pattern; 3) statistical 
independence of demands between booking classes; 4) no cancellation or no-shows; 5) single 
flight leg; and 6) no batch booking (McGill and Van Ryzin, 1999).  For example, Belobaba 
(1989) develops the so-called EMSR heuristic.  The key concept of the EMSR approach is to 
compare the marginal value of the seat with the ticket price of the fare classes while making 
the accept/deny decision.  Though it provides the optimal solution only for the two-fare case, 
one advantage of the EMSR approach is that its implementation is relatively easy.  Besides, 
the generated solution appears to be very close to the optimal solution.  Nonetheless, Curry 
(1990), Wollmer (1992), Brumelle and McGill (1993) further develop the method to find the 
global optimal solution. 
 
Above research works are often referred as the static models, as the demand for each fare 
class is modeled by a random variable, based on the first and the second assumption in the 
previous paragraph.  These two assumptions greatly simplify the complexity of RM 
problems, but some demand characteristics are inevitably overlooked.  To fully incorporate 
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the time-dependent characteristic of demand, Lee and Hersh (1993) develop a dynamic 
programming (DP) model, in which the request probabilities based on Poisson arrival 
processes are used to represent the demand pattern.  Thus, the assumption of sequential 
arrival of booking classes is relaxed and the booking patterns for different classes, 
characterized by the probabilities indexed by booking periods, are allowed to overlap in time.   
In addition, Lee and Hersh (1993) further generalize the sixth assumption of single-seat 
booking to batch booking, and the request probabilities turn out to depend on booking size as 
well. 
 
Many other research works have been done with respect to seat inventory control policy.  
Weatherford and Bodily (1992) provides a very general approach to categorize the nature of 
RM problems, and the survey paper by McGill and van Ryzin (1999) serves as an excellent 
reference of RM research works.  However, very few researches have addressed the RM 
problem from the viewpoint of air cargo industry.  Kasilingam (1997) highlights the 
characteristics and complexities of air cargo revenue management, which differs from air 
passenger revenue management in many aspects.  The most important one is the uncertainty 
of air cargo space supply.  There are many factors related to the air cargo space available on 
a flight.  Below are some important ones among them: 

• The flight plans submitted by airlines need to be approved by the air traffic control 
(ATC) authorities before take-off.  The air route assignment approved by the ATC 
authorities as well as the weather conditions along the routes can affect the amount of 
fuel required and, thus, the payload of the flight.  In addition, the maximum take-off 
weight of an aircraft can also be affected by the temperature and humidity of the 
runway. 

• In addition to the gross weight, the air cargo rating system also considers the volume of 
the shipment, which is converted into the so-called volume weight by being divided by 
a constant, 6000 cm3/kg.  The chargeable weight, on which the airlines charge the 
forwarders, is the greater of the gross weight and the volume weight.  Thus, while 
selling the cargo space in terms of tons or kg’s, the airlines are not sure that the aircraft 
can handle the shipments for the space sold.  This loading issue is further complicated 
by the fact that the shape of the shipments can cause some problems while being 
loaded into the containers and the pallets of the aircraft. 

• Finally, significant amount of air cargo nowadays are carried in the belly cargo space 
of passenger aircrafts.  For this case, the luggage of passengers has a higher priority 
over the air cargo shipments.  However, the airlines do not have the full control of the 
number of passengers who will actually show up, not to mention the amount of 
luggage to be checked. 

 
Kasilingam (1997) provides an overbooking model, taking into account the effect of the 
cancellation/no-shows and the supply uncertainty, a unique characteristic for the air cargo 
industry.  However, there is no research done to address the typical inventory control issue 
for air cargo.  Based on the single-leg DP model in Lee and Hersh (1993), this study 
develops the model to provide the optimal control policy, given the supply uncertainty 
inherited in the air cargo RM problems. 
 
 
3. DYNAMIC PROGRAMMING MODEL 
 
While facing the uncertainty of cargo space supply, the airlines usually sell the cargo space to 
the forwarders based on a forecast value.  The actual supply is materialized right before 
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take-off.  These two quantities are denoted by C and by T for the rest of the paper. To 
capture the randomness of the cargo space supply, T is modeled as a random variable with 
known distribution in this study.  The number of denied boarding depends both on the space 
unsold before take-off and on the actual supply.  Figure 1 illustrates the relation among these 
factors. 
 
 
 
 
 
 

Figure 1. Number of Denied Boarding 
 
If the actual supply is smaller than the forecasted supply, there is a chance that denied 
boarding could happen.  However, the occurrence of denied boarding also depends on the 
number of space not sold before take-off, denoted by s.  If the unsold space is less than the 
gap between the forecast and the actual supplies, a number of b=(C-T)-s denied boarding is 
resulted in.  The cost arising from denied boarding can be modeled by a function D(b), 
which links the relation between the cost and the number of denied boarding.  Of course, the 
choice of the function D(b) depends on the policy and the cost structure of airlines.  The 
function can incorporate the compensation paid to the customers.  However, it should also 
consider the consequent loss such as the extra storage and handling cost incurred for holding 
the shipments and the degradation of company reputation or customer loyalty.  The negative 
impact of denied boarding is modeled as a penalty for the rest of the paper and is a key issue 
in the numerical experiment.  Based on the DP model introduced in the following paragraphs, 
the penalty function does not have to be linear or of any simple form.  Thus, the airlines can 
choose the one that truly reflects their practical considerations. 
 
Based on the model developed by Lee and Hersh (1993), the study defines and tackles a 
single-leg air cargo space RM problem with supply uncertainty by a dynamic programming 
(DP) model, which comprises the booking period as the stage and the available cargo space 
(in terms of tons) as the state.  The air cargo demand is assumed to follow a Poisson random 
process, and the booking pattern is modeled by the request probabilities varying with booking 
period, fare class, and booking size.  The supply uncertainty characteristic and the penalty 
for denied boarding are modeled at the last stage of the DP formulation.  The optimal control 
policy and the expected revenue are derived by solving the DP problem. 
 
The formulation of the DP model is as follows: 
Notation: 

• i: indices of fare classes (i=1 .. k, assuming i=1 is the highest-fare class and i=k is the 
lowest.) 

• n: indices of decision periods (n=0 .. N, assuming n=0 is the period of take-off.) 
• m: indices of booking size (m=1 .. Mi, which is the maximum booking size.) 
• s: available cargo space 
• Fi: rate of fare class i 
• Pi

n: probability of booking request for fare class i at decision period n 
• C: forecast of cargo space supply 
• T: random variable to model the actual cargo space supply 
• D(b): penalty function in terms of the number of denied boarding, b 
• fs

n: expected total revenue given s available space at decision period n 

T
C 

s (unsold space) 

(C-T) vs. s 
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Based on above notation, the recursive equation of the DP model is as follows: 
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At the time of take-off (n=0), the expected revenue is determined based on the number of 
denied boarding and the resulted penalty, weighted by the probabilities of cargo space supply.  
For the case of zero available space (s=0), no decision can be made, and the expected revenue 
is naturally equal to that of the previous stage.  As for the general case (n>0 and s>0), the 
expected revenue as well as the optimal control policy depends on the two quantities, Fi+fs-1

n-1 
and fs

n-1, inside the max function.  If the former is greater, the space should be sold to the 
booking request; otherwise, the space should be reserved to the next stage.  This decision is 
made based on a concept very close to the EMSR approach in Belobaba (1989).  The 
marginal value δ, defined as in (2), is a function of the current decision period and the number 
of available spaces.  By comparing the marginal value with the rate of each fare class, the 
accept/deny decision for the optimal control policy can be determined. 

n
s

n
s ffsn 1),( −−=δ  (2) 

 
With the introduction of one more symbol Gim

n to describe the probability of the booking 
request with size m for fare class i at decision period n, Equation (1) can be modified to model 
the case of multiple-seat booking as (3), and the marginal value can be defined as (4). 
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4. NEMERICAL EXPERIMENT 
 
The numerical experiment is performed based on the test problems, which includes the 
operational data from a Taiwanese international carrier.  The actual capacities of the 747-400 
freighters for the Taipei-Los Angeles route were collected during January and February in 
2004.  After fitting the raw data, a normal distribution is used to represent the random 
variable for uncertain cargo space supply.  The mean of the normal distribution is chosen to 
be 100 tons, and the standard deviation is 3.07 tons.  In the DP model, this distribution is 
further transformed to a discrete distribution shown in Figure 2. 
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Figure 2. Distribution of Cargo Space Supply 
 
To characterize the demand side, the airway bills of those flights were collected.  In average, 
there are 40 airway bills per flight.  The number of decision periods is chosen to be 300 to 
ensure that, in the Poisson arrival process, the probability of more than two booking requests 
resulted within a period is negligible.  The analysis of the airway bills also suggests that, in 
terms of batch-booking size, the mean is 2.5 tons and the standard deviation is 1.78 tons.  
The probabilities with respect to various booking size is thus modeled by the discrete 
probability distribution shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 

Figure 3. Distribution of Batch-Booking Size 
 
Though market segmentation and other RM techniques are not common in the air cargo 
industry at this moment, the concept of fare classes have been proposed as in Ingold and 
Huytom (2000).  In this study, three fare classes are assumed, and their associated rates and 
probabilities of occurrence are summarized in Table 1.  Particularly, the penalty for the 
denied boarding in the base case of the sensitivity analysis is assumed to be the rate of the 
lowest booking class, i.e. $85/kg.  In addition, based on the assumption of demand 
composition in Table 1 and the distribution of booking size in Figure 3, the request probability 
for each fare class of each booking size at each period can be determined according to the 
Poisson arrival process. 
 

Table 1. Fare Classes in Test Problems 
Classes Rate ($/kg) Demand Composition 
Class 1 f1 = 125 0.15 
Class 2 f2 = 100 0.60 
Class 3 f3 = 85 0.25 
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To understand the behavior of the model in terms of the expected total revenue and the 
optimal control policy, sensitivity analyses are conducted with respect to the two critical 
factors in the model, supply uncertainty and penalty for denied boarding.  Particularly, the 
parameter sd stands for the level of supply uncertainty.  The case of sd=1 represents the 
situation where the standard deviation is equal to 3.07, the original one calibrated from the 
raw data.  Thus, the standard deviation of the random variable T in the test problems is 
3.07×sd.  On the other hand, the parameter d is used to represent the level of penalty.  The 
case of d=1 is for the situation of $85/kg, and the actual penalty paid for denied boarding in 
the test problems is $85/kg×d.  The results and the findings of the sensitivity analysis are 
summarized in the following sections. 
 
 
4.1 Analysis of Expected Revenue 
 
For the test problems in this numerical experiments, the expected revenue can be derived by 
computing the objective function value, fs

n for s=100 and n=300.  As the supply uncertainty 
increases, the airlines are more likely to pay the denied-boarding penalty.  Therefore, the 
expected revenue should decrease.  Moreover, the higher the penalty is, the greater the 
revenue decrease is supposed to be.  By varying the values of the two parameters, the 
numerical experiment is designed to investigate the effects of the two factors.  The situation 
of no supply uncertainty (i.e. sd=0) and no penalty for denied boarding (i.e. d=0) is used as 
the base case.  The expected revenues for the various test problems are divided by that of the 
base case to evaluate the effect of revenue decrease.  Figure 4 and Figure 5 show the ratios 
between the test cases and the base case. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Effect of Penalty on Revenue for Various Levels of Supply Uncertainty 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Effect of Supply Uncertainty on Revenue for Various Levels of Penalty 
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According to the cases of high, medium, and low supply uncertainty (sd=1, 4, 8 respectively) 
in Figure 4, the decrease of expected revenue become greater as the penalty for denied 
boarding increases (d=0 to 10).  Nonetheless, the trend appears to be flat when the penalty is 
relatively high.  On the other hand, the cases of high, medium, and low levels of penalty 
(d=2, 5, 10 respectively) are shown in Figure 5.  As the supply certainty increases (sd=0 to 
10), the decrease of expected revenue becomes greater, too.  However, the curves become 
severely downward when supply uncertainty is high, indicating the expected revenue is 
decreased significantly.  Finally, based on these two figures, the expected revenue is not 
affected if either factor does not exist (i.e. sd=0 or d=0). 
 
Above results suggests that supply uncertainty cast stronger impact on expected revenue when 
compared to penalty level.  Thus, for revenue maximization, it is critical for airlines 
cautiously to manage the supply of cargo space.  Though inherent to air cargo operation, 
supply uncertainty can be reduced if good forecast techniques are applied.  Particularly, if 
the variation of cargo space supply can be maintained within a relatively small range, the 
expected revenue is not very sensitive to the increase of the penalty for denied boarding.  
The airlines can even raise the level of penalty to attract more customers. 
 
 
4.2 Analysis of Control Policy 
 
To further evaluate the impact of supply uncertainty and penalty for denied boarding, the 
optimal control policies with respect to the test problems are recorded.  With the example of 
booking size of 5, Figure 6 illustrates how these two factors affect the accept/deny decision 
for the booking requests of different classes. 
 
Based on the control policies shown in Figure 6, airlines should be reserve the space for 
high-fare classes if the number of spaces left is small and/or it is far from the time of take-off, 
i.e., toward the lower-right corner in the charts.  On the other hand, airlines should try their 
best to sell the spaces if the number of spaces left is plenty and/or the time of take-off is close, 
i.e., toward the upper-left corner in the charts.  However, as shown in Figure 6, the 
“boundaries” representing the change of the accept/deny decisions move with respect to the 
cases with various levels of supply uncertainty and penalty. 
 
When compared to the base case with light penalty and small supply uncertainty in part (a), 
substantially increasing the penalty to 10 times as in part (b) does not change the optimal 
policy much.  However, if supply uncertainty is increased significantly to 8 times as in part 
(c), the optimal control policy is considerably modified, though the penalty remains to be low.  
This result is once again consistent with the argument made in the previous section that 
supply uncertainty is more influential than penalty level for denied boarding.  Finally, as in 
part (d), for the situation of highly uncertain supply and heavy penalty level, airlines have to 
be very conservative while selling the cargo space.  Many spaces have to be reserved or be 
sold only to higher fare classes for many occasions to counter the effect of denied boarding, 
which is very likely to happen. 
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Figure 6. Effect of Supply Uncertainty and Penalty on Optimal Control Policy 

 
 
5. CONCLUSIONS 
 
This study applies the RM technique, which has been widely used in air passenger operation, 
to the control of air cargo space.  One important difference between the RM problem of air 
cargo and that of air passenger is supply uncertainty.  In addition, denied boarding caused by 
supply uncertainty must be dealt with carefully.  A single-leg air cargo space RM problem is 
defined and tackled by a dynamic programming (DP) model in this study.  The optimal 
control policy and the expected revenue are derived by solving the DP problem.  Numerical 
experiments based on the actual operational data of a Taiwanese international carrier are 
performed to verify the model.  Particularly, sensitivity analyses are conducted with respect 
to the most important two factors in the model, supply uncertainty and penalty for denied 
boarding.  The result shows that supply uncertainty is more influential than penalty level.  
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Thus, to raise the revenue by RM techniques, airlines need to accurately forecast and control 
the supply of air cargo space. 
 
The major goal of this study is to highlight the fundamental difference between the RM 
problems of air cargo and air passenger, and a simple dynamic single-leg problem is 
considered.  Thus, the direction of future researches is first aiming to extend the model to the 
network RM problems of air cargo so as to deal with with the current hub-and-spike type of 
operation.  In addition, practical issues such as cancellation and overbooking should be 
incorporated into the model.  Finally, as mentioned earlier, loading is one of the sources of 
supply uncertainty.  If the information of the shipments such as the dimensions and the gross 
weights is available in advance, the model can take them into consideration to further 
alleviate its impacts on supply uncertainty.   
 
RM techniques are not widely applied in the air cargo industry.  Especially, the concept of 
market segmentation is new to this industry, though some airliners have begun to offer 
different products such as various kinds of time-definite services.  It is critical to analyze the 
impact of implementing this kind of mechanism, as current shippers may be unwilling to pay 
extra charge for late bookings.  On the other hand, airlines can be reluctant to offer penalty 
for the shipments denied for boarding.  According to the current practice, shipments denied 
for boarding are usually re-routed and sometimes delayed without any compensation.  
Nonetheless, as the value of time for many air cargo shipments are extremely high, both the 
suppliers and the consumers of air cargo service eventually will agree on differentiating the 
types of air cargo services.  Therefore, future researches should focus on the strategic issues 
such as pricing as well as some tactical decisions such as class-dependent penalty. 
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