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Abstract: In this paper we present an optimization model for bus scheduling. This model 
constitutes one of the three major components of a solution approach for solving the transit 
network design problem. The problem of scheduling can be defined in the following general 
terms: Given the origin destination matrix for the bus trips for design period, the underlying bus 
network characterized by the overlapping routes, how optimally to allocate the buses among 
these routes? The bus scheduling problem is solved in two levels. In the first level, minimum 
frequency of buses required on each route, with the guarantee of load feasibility, is determined 
by considering each route individually. In the second level, the fleet size of first level is taken as 
upper bound and fleet size is again minimized by considering all routes together and using GAs. 
The model is applied to a real network, and results are presented. 
 
Key Words: Bus scheduling, Optimization, Genetic algorithms. 
 
 
1. INTRODUCTION 
 
The design of bus transit system may be considered as a systematic decision process consisting 
of five stages: network design, frequency setting, time table development, bus scheduling and 
driver scheduling. However, the two most fundamental elements, namely, the design of routes 
and setting of frequencies, critically determine the system’s performance from both the operator 
and user point of view. Significant savings in resources can be made by reorganization of bus 
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routes and frequency to suit the actual travel demand. In Kidwai (1998) the solution framework 
for transit network design consists of three major components, namely, transit route design, 
transit assignment and transit scheduling. In this paper transit bus scheduling problem is 
formulated and solved in two phases. In the first phase, buses are assigned to individual routes by 
an interactive procedure. In the second phase, an attempt is made to further reduce the fleet size 
and genetic algorithms are used as an optimization tool. Genetic algorithms are search algorithms 
that are based on concepts of natural selection and natural genetics. The genetic algorithm 
method differs from other search methods in that it searches among a population of points and 
works with a coding of parameters, rather than the parameter value themselves. The transition 
scheme of the genetic algorithm is probabilistic, whereas traditional methods use gradient 
information. Finally the model is applied to a real network, and results are presented. 
 
 
2. REVIEW OF PAST STUDIES 
 
A review of literature reveals various approaches and different computational tools for 
scheduling of urban bus transit problem. Lampkin and Saalmans (1967) formulated a constrained 
optimization problem for frequency determination. Their objective was to minimize the total 
travel time for a given fleet size constraint and a random search procedure was used for solution. 
Rea's (1972) model search for an optimum bus network by adjusting iteratively the frequencies 
and type of buses on each link to correspond to the link flow level, such that the service on some 
links is enhanced whilst on others it is depleted. The optimum situation is reached when no 
further change in link service levels is detected. Silman et al. (1974) determined optimum 
frequencies for a set of bus routes and fleet size, which could minimize the total travel time and 
discomfort (travelling without a seat) by a gradient method procedure. Hsu and Surti (1977) used 
the concept of marginal ridership (ridership provided by an additional unit of service frequency) 
to determine adequate frequency for each route for a given fleet size. Scheele (1977) proposed a 
mathematical programming algorithm of the compound minimization type for bus traffic model. 
The problem of optimal bus frequencies is solved by a gradient projection method. Dubois et al. 
(1979) used a two step procedure for frequency determination. Mandl (1979) assumed constant 
frequency on all the routes. Dhingra (1980) has developed a detailed simulation model for 
studying the effect of frequencies on various route level and network level measures of 
effectiveness. Furth and Wilson (1981) model allocates the available buses between time period 
and between routes so as to maximize net social benefit subject to constraints on total subsidy, 
fleet size and level of vehicle loading. Han and Wilson (1982) model recognizes passenger route 
choice behaviour and seeks to minimize a function of passenger wait time and bus crowding 
subject to constraints on number of buses available and the provision of enough capacity on each 
route. Baaj (1990) and Shih and Mahmassani (1994) have used the same model as Han and 
Wilson (1982), only their model differs in details of passenger path choice logic. Shih and 
Mahmassani (1994) have also used the concepts of optimal vehicle size, frequency adjustment 
for co-ordinated routes, timed transfer and transit centers. Dashora (1994) used an expert-system 
based model which allocates the buses to different routes between a maximum and minimum 
number, based on additional bus allocation factor (saving in waiting time/additional cost of 
operation) criteria. The candidate route for increasing a bus is the one for which additional bus 
allocation factor is maximum. The buses are allocated till fleet size is exhausted. Many 
researchers in the past decade have tried biologically motivated optimization techniques like 
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genetic algorithm and artificial neural network, for transit network design with promising results. 
Among them Xiong and Schneider (1993), Chakraborty et. al. (1995) Pattnaik et. al. (1998) 
Chien et. al. (2001), Khalage et. al. (2001), Bielli et. al. (2002), Tom and Mohan (2003) and 
Ngamchai and Lovell (2003), needs mention. 
 
 
3. PROPOSED METHODOLOGY 
 
First general formulation for optimal bus allocation problem is given. In the present methodology 
a bi-level optimization is used to solve this problem. In the first level, minimum frequency of 
buses (then the number of buses) required on each route with the guarantee of load feasibility is 
determined by considering each route individually. Then by summing up the number of buses on 
each route fleet size is determined. In second level by taking the fleet size of first level as a lower 
bound, the fleet size is again minimized by considering all routes together and using GAs. 
 
3.1 General Formulation 
In the present formulation, general model for bus scheduling problem is adopted similar to Han 
and Wilson (1982) and given as follows: 
Objective   Minimize J = J (q k

ij , fk, Ak) 

Subject to    Passenger flow assignment: q k
ij  = g k

ij   ( Vab, fr, Ar ) 

∀   k ∈ SR, ij ∈ Lk,   r ∈ Xij and     a,b ∈  N 
    Load feasibility:  CAP × fk ≥ (q k

ij )max         ∀   k ∈ SR 

Fleet size: ∑ =

SR

k 1
Tk × fk     ≤  M 

Where 
fk - frequency of buses operating on route k. 
Ak - set of other attributes associated with bus route k. 
CAP – capacity of buses operating on the network’s routes. 
q k

ij  - Passenger flow on link i – j of bus route k. 

g k
ij  - General function form which determines passenger flow assignment on link i – j of bus 

route k.  
Vab - origin destination flow between nodes a and b. 
N - set of nodes on the bus network. 
Lk - Set of links on bus route k. 
SR - set of bus routes. 
Tk - Round trip time of route k (including lay over time). 
Xij - Set of routes offering same service between nodes i and j. 
M – Total number of buses available. 
 
The objective function in the general case should include wait time and crowding levels for all 
passengers. Since many buses will be operating close to or at capacity on portions of their trips, 
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the specification of accurate wait time and crowding level function are extremely difficult (Han 
and Wilson, 1982). For this reason the simplified objective of minimizing the occupancy level at 
the most heavily loaded link on any route in the system is adopted here. This objective is 
different from, but related to minimizing wait times and crowding levels throughout the system, 
and is similar to the objective currently used by many operators in allocating buses in heavily 
utilized system. 
The load feasibility constraint requires that in a given period of time passengers should not be 
prevented from boarding a bus on their preferred route because inadequate capacity has been 
allocated to that route. This does not, of course, imply that every passenger will be able to board 
the first bus on that route because random fluctuation in the load will mean that some buses will 
be full at the heaviest points on each route. Some passengers who cannot board the first bus on 
their preferred route may, in fact, subsequently board an alternate route. Passenger path choice is 
based on an assumed flow assignment rule “Where there is one or more alternatives whose trip 
time is within a threshold of the minimum trip time a frequency share rule is applied”. This is an 
allocation formula that reflects the relative frequencies of service on alternative paths.  
 
3.2 First Level Optimization 
The problem for first level optimization may be formulated as:  

Objective   Minimize:  Z = ∑ =

SR

k 1
( Tk × fk ) 

Subject to  Passenger flow assignment: q k
ij  = g k

ij   ( Vab, fr, Ar )   ∀   k ∈ SR 

    Load feasibility:  CAP × fk ≥ (q k
ij )max             ∀   k ∈ SR 

The following algorithm is used to solve this problem. 
 
Step 1 For the given origin destination transit demand matrix and transit route network, assume 
the same number of trips on each route, n = 1; f n

k . 
Step 2 Assign the origin destination transit demand matrix on the bus transit network using the 
assignment model discussed in next section. 
Step 3 For each route, find out the link carrying the maximum flow and determine the number of   
trips on each route using the formula. 

                                                                              

 f 1+n
k   =  

capacitybus
q k

ij

×2
)( max

  

                                                                                       
These number of trips are rounded off to next higher integer. 
Step 4 If  f 1+n

k  ∼ f n
k  is very small for all routes, go to Step 5; otherwise set n = n + 1 and go to 

Step 2. 
Step 5 Output the number of trips required on each route. 
Step 6 Find the number of buses required on each route to cater to these trips using the formula:  

 N k  = 
periodtime

Tf kk ×  

Again these number of buses are rounded off to next higher integer. 
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Step 7 Find the base fleet size (Wo) by summing up the number of buses on each route. 
 
Though there is no theoretical proof for convergence of the above algorithm, experience to date 
has indicated a converging pattern (Baaj, 1990; Han and Wilson, 1982). 

 
3.3 Model for Transit Network Assignment  
The assignment model is crucial in transit network analysis because it determines the passenger 
flows on each links, which are used to calculate various costs and performance measures. This 
requires the assignment of passenger demand matrix to the set of routes that define any feasible 
transit network configuration. Han and Wilson (1982) used multi-path transit assignment, with 
transfer avoidance and/ or minimization acting as the primary choice criterion. Baaj and 
Mahmassani (1990) adopted this feature and developed a procedure for transit network analysis, 
and a similar procedure is adopted in the present study.   
 
3.4 Second Level Optimization 
In the first level optimization, the base fleet size has been determined by considering individual 
route's capacity and no attempt is made to get the minimum fleet size on global bases (i.e. 
considering all the routes together). The reason why one can still reduce the fleet size below the 
base fleet size may be attributed to the extensive overlapping of the routes. If there is no 
overlapping of the routes, one can't hope to reduce the fleet size below the base value. Though 
there are various reasons of, how extensive overlapping of routes may help to reduce the fleet 
size, two reasons are discussed below.  
(a) In the routes shown in Figure 1 there is overlapping for many links. Suppose the links which 
carry the maximum flow (i.e. used for minimum number of bus determination in the first level of 
optimization) are (3) − (4) and (6)  − (7) for routes RI and RII, respectively. If one bus is reduced 
on route RI, there will be violation of the load feasibility at link (3) − (4), but because this link is 
common with route RII and reserve capacity is available on this link as this link is not the 
maximum flow carrying link for route number RII, the extra demand of link (3) − (4) may be 
taken care of by buses on route RII. 

 
Figure 1. Example Network 
 
 (b) Take the example of two overlapping routes shown in Figure 2. Here route RI is assumed to 
be much longer than route RII (which is quite possible as routes may vary in length from 5 to 15 
km). The number of  buses required on a route to make a fixed number of trips are directly 
proportional to the length (round trip time) of the route. It is further assumed that route RI is 
level optimization) are along the overlapping portion of the two routes. Then if two buses are 
reduced on route RI and one bus in increased on route RII, the number of trips on overlapping 
portion will remain the same and load feasibility constraint may not be violated even after one 
 

1 2 3 4 5 6 7 8 

11 12 13 14 

RI 

RII 
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Figure 2. Example Network to Illustrate Bus Reduction 
 
bus is reduced below the base fleet size. These possibilities of reducing the base fleet size are 
investigated in the second level optimization using genetic algorithms (GAs). As GAs are not 
very common for transportation engineering applications, it is imperative at this stage to discuss 
their principles. 
 
 
4. GENETIC ALGORITHMS 
 
 The idea of genetic algorithms (GAs) was first conceived by Professor John Holland of the 
University of Michigan in 1975. Genetic algorithms are computer based search and optimization 
algorithms which work on the mechanics of natural genetics and natural selection (Goldberg, 
1989). The mechanics of a simple genetic algorithm are simple involving copying strings and 
swapping partial strings. The explanation of why this simple process works is subtle yet 
powerful. Simplicity of operation and implicit parallelization are two of the main attractions of 
the genetic algorithm approach.  
 
4.1 Working Principle 
GAs begin with a population of string structures created at random. Thereafter, each string in the 
population is evaluated. The population is then operated by three main operators - reproduction, 
crossovers and mutation - to create a hopefully better population. The population is further 
evaluated and tested for termination. If the termination criteria are not met, the population is 
again operated by above three operators and evaluated. This procedure is continued until the 
termination criteria are met. One cycle of these operators and the evaluation procedure is known 
as a generation in GA terminology. Figure 3 illustrates a pseudo code for a simple genetic 
algorithm.  
 
begin 

Initialize population of strings; 
Compute fitness of population;  
Repeat 

Reproduction; 
Crossover; 
Mutation; 
Compute fitness of population; 

 Until (termination criteria); 
end. 

Figure 3. Pseudo Code for a Simple GA 

1 2 3 4 5 86 97 10 11 12 

21 22 23 24 

RI 

RII 
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4.2 Strings 
GA starts with initial population of strings. Each string represents all the problem variables in the 
optimization problem to be solved. These strings are created at random. These strings are similar 
to chromosomes in biological systems. The mechanism of genetic algorithms involves the 
manipulation of strings of 0 and 1. Since each string consists of binary digits, the coordinates of 
a point in a search space is influenced by the values of 1 or 0. The size of the string depends on 
the desired solution precision. The creation of strings in the initial population of GA is as simple 
as tossing an unbiased coin. The successive coin flips (head=l, tail=0) can be used to decide 
genes (bits) in a string. Then the next string is created. This process is continued till entire 
population of strings is created. 
 
4.3 Coding and Decoding 
In order to use GA to solve the optimization problem, decision variables are first coded in some 
string structure, though this coding is not absolutely necessary. Binary coded strings having 1s 
and 0s are mostly used. The length of the string is usually determined according to the desired 
solution accuracy. Once the coding of the variables has been done, the corresponding point can 
be found using a fixed mapping rule, usually, the linear mapping rule is used (Goldberg, 1989).  
 
4.4 Evaluation 
After all the values of variables are obtained, they can be used to calculate the objective function 
value. In general, a fitness function F(x) is first derived from the objective function and used in 
successive genetic operators. For maximization problems, the fitness function can be considered 
to be the same as the objective function i.e., F(x) = f(x). For minimization problems the fitness 
function is an equivalent maximization problem chosen such that the optimum point remains 
unchanged. The following fitness function is usually used (Goldberg, 1989).  

F(x) =  
)](1[

1
xf+

 

This transformation does not alter the location of the minima but converts a minimization 
problem to an equivalent maximization problem. The fitness function value of a string is known 
as the string's fitness. In the same way, all the fitness values of the strings in a particular 
generation are calculated. The maximum, minimum and average fitness values of the strings in a 
population are calculated. Then the termination criterion is checked. If the termination criterion 
is not reached, GA operators are applied to create a new population. 

 
4.5 Genetic Algorithm Operators 
The population in GA is usually operated by three main operators: reproduction, crossover and 
mutation. These are applied to string population to create a new population. These operators 
involve random number generation, string copying, partial string exchanging and changing bits 0 
to 1 and vice versa. These three operators are described below. Reproduction is usually the first 
operator applied on a population. Reproduction is a process in which individual strings are 
copied according to their fitness function values. Intuitively, we can think of the fitness function 
as some measure of profit, utility or goodness that we want to maximize. Copying strings 
according to their fitness values means that string with a higher value have a higher probability 
of contributing one or more offsprings in the next generation. A tournament size of two, known 
as binary tournament, is used in most applications and the same is used in the present study. 
After reproduction, crossover is applied to the string of the mating pool. It is intuitive from this 
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construction that good substrings from either parent string can be combined to form a better child 
string if appropriate site is chosen. Since the knowledge of an appropriate site is usually not 
known, a random site is chosen. But this random site selection is taken care of by selection 
(reproduction) operator, because if good strings are created by crossover, there will be more 
copies of them in the next mating pool, otherwise they will not survive beyond next generation. 
Crossover operator is mainly responsible for the search aspect of genetic algorithms; mutation 
operator is also used for this purpose sparingly. By mutation diversity can be maintained in the 
population, which helps in creating a better string. Mutation operator changes a 1 to a 0 and vice 
versa with a small mutation probability. The need for mutation is to keep diversity in the 
population. For example, if in a particular position along the string length all strings in the 
population have a value 0, and a 1 is needed in that location to obtain the optimum then neither 
reproduction nor crossover operator will be able to create a 1 in that location. The inclusion of 
mutation may turn that 0 into a 1. Furthermore, for local improvement of a solution and to avoid 
getting trapped in local optima, mutation may be found useful. One cycle of these operations and 
the subsequent evaluation procedure is known as one generation in GA terminology. 

 
4.6 Termination Criteria  
When the average fitness of all the strings in a population is nearly equal to the best fitness, the 
population is said to have converged. When the population is converged, the GA is terminated. 
The same can be done by fixing maximum number of generations, the number of generations at 
which population will converge. In GA, maximum number of generations is generally used as 
the termination criteria. The same has been used in the present study. 
 
 
5. PROBLEM FORMULATION FOR SECOND LEVEL OPTIMIZATION 
 
As we know the number of buses on each route (Nk) from the first level optimization, it is 
sensible to make the search around these Nk values, in order to avoid otherwise a meaningless 
search. Therefore, a window is decided around the previously determined Nk values and search is 
made only in that window. In the present study, it is decided to search within a window of 8 
buses around the previously determined Nk values. For example, if for a route k, value of Nk is 
20 buses, then the search will be made only between 16 to 23 buses for this route. There is a 
rationale for selecting the window of 8 buses for search. In GA, variables are coded as binary 
strings and n bits are required for 2n different values of a variable. Therefore, one bit will be 
required for 2 buses, 2 bits for 4 buses, 3 bits for 8 buses and n bits for 2n buses. If we decide to 
take 2 bits for representing bus window of 4 on each route for searching  an optima, it will give 
rise to a narrow search space and optima may lie outside this window. On the other hand if we 
decide to take 4 bits for representing bus window of 16 on each route to search for an optima, it 
will exponentially increase the search space and may give many infeasible (i.e. zero or negative 
buses on a route) values. After it is decided to use the window size of 8 buses, 3 bits will be 
required for each route. Therefore for k routes, a string of length 3 x k bits will be required. 
Because the window size is 8, the lower and upper limits on the number of buses for a route k 
will be, 
Nkmin = Nko - 4 
Nkmax = Nko +3; respectively. 
Where Nko is the number of buses on route k from first level optimization. The problem for the 
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second level optimization may be stated as below. 

Objective   Minimize:  Z = ∑ =

SR

k 1
Nk  

Subject to   
 Nkmin ≤    Nk ≤   Nkmax     ∀   k ∈ SR 

   ∑ =

SR

k 1
Nk   < W0 

 Passenger flow assignment 
Load feasibility:  CAP × fk ≥ (q k

ij )max           ∀   k ∈ SR 

Where, 
Nk  - number of buses on route k, and 
W0 - Base fleet size (found in first level optimization). 
 
 
6. GENETIC ALGORITHM FOR SOLUTION 
 
In the above problem decision variables (number of buses on each route) can take only integer 
values and last two constraints are highly non-linear. Therefore, GAs which are best suited for 
such problems are used for solution. GA steps are given below. 
 
Step 1 Compute Nkmin values for each route as: Nkmin = Nko - 4. 
Step 2 Choose a selection operator, a crossover operator and a mutation operator. Choose 
population size, crossover probability and mutation probability. Choose a maximum allowable 
generation number. 
Step 3 In this step, GA creates an initial population of strings randomly. Based on the number of 
routes the required string length can be calculated. For example, if there are k routes, the string 
length should be k x 3. 
Step 4 In the fourth step, string is decoded and the actual bus number for each route are obtained 
using the formula,  

Nk   = Nkmin+ decoded value of kth 3 bits of the string. 
For example, if there are three routes and Nkmin values for these routes are 6, 9 and 8, then for a 
typical string 110010101 the Nk values for the three routes will be 12 (6+6), 11 (9+2) and 13 
(8+5), respectively; 
Step 5 Calculate the fleet size by summing up Nk values for all routes. If this fleet size is greater 
than or equal to the base fleet size, assign fitness a very small value; otherwise proceed with next 
step. 
Step 6 Compute frequencies using Nk values for each route. Assign the passengers on different 
links of the network using assignment model. 
Step 7 If the load feasibility constraint is violated, assign fitness a very small value; otherwise 
compute fitness using the formula 

fitness = 
∑+ kN
C

1
 

where C is a constant used to normalize the objective function. 
Step 8 If the entire population of strings is processed, compute the best and average fitness value 
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in the generation and test for termination criteria; otherwise evaluate the next string in the 
population. 
Step 9 If the current generation is equal to the maximum number of generations assumed, the 
program is terminated and the scheduling giving the minimum fleet size is considered as the 
optimal schedule; otherwise the GA operators - reproduction, crossover and mutation are applied 
on the current population to obtain a new population of strings and the new population is 
processed again. 
 
 
7. TESTING ON SAMPLE NETWORK  
 
To test the proposed model, the road network of the city of Burdwan, West Bengal, India, with a 
total of 60 nodes and 70 links is selected as shown in Fig. 4. A conservative bus speed of 15 
km/hour is assumed through out the network to convert the link distance in time units. A 
symmetric demand matrix for the design peak period of 3 hours is randomly generated to obtain 
 

 
Figure 4. Road Network of Burdwan, W. Bengal, India 
 
test data. The route design algorithm (Kidwai, 1998) has produced 81 feasible solutions for 
different ranges of user and operator parameters, for the given road network and these solutions 
are used as an input for testing the scheduling model. Several external parameters which are 
required before running the numerical experiments are enumerated below. 
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• Transfer penalty – 5 minutes of equivalent in-vehicle time. 
• Bus capacity – 60 passengers. 
• Minimum allowable frequency – 1 bus/hour. 
• Number of buses on all routes – the number of buses on all routes which resulted from 

the first level optimization. 
• Base fleet size – the fleet size produced by first level optimization. 
• Bus search window size – a window size of 8 buses is used for making search around the 

number of buses determined in first level optimization, for all transit routes.   
• GA parameters 

• String length – the string length required is 3 times the number of routes in a transit 
network. 

• Maximum number of generations – 100. 
• Population size – because string length is different for different runs of algorithm, 

therefore, population size is also varied according to the string length, the following 
ranges are fixed after preliminary testing. 

 
String length Population size 

< 40 
40 – 50 

> 50 

50 
60 
70 

 
• Cross over probability – 0.80, single point crossover is used. 
• Mutation probability – 0.01, bitwise mutation is used. 
• Binary tournament selection is used. 

 
Out of the total 81 feasible solutions produced by transit route design algorithm, the scheduling 
model using GA reduced two buses below base fleet size for three transit networks and one bus 
for nine networks only. During the model formulation stage it was expected that GA based 
optimization will reduce the fleet size appreciably below the base fleet size. This meager 
reduction in base fleet size may be attributed due to very little overlapping of routes in the transit 
network the city of Burdwan. However, it is surmised that for transit networks with extensive 
overlapping the proposed algorithm would yield significant savings. 
 
 
8. SUMMARY AND CONCLUSION 
 
The optimal allocation of buses with a conventional approach poses considerable difficulties 
owing to the combinatorial nature of the problem and the complex nature of the route choice 
model. Hence genetic algorithms (GAs) are proposed as the computational tool because of their 
ability to handle large and complex problems. The solution framework for the present problem 
involves two phases: (1) allocation of buses on individual routes with maximum link flow as the 
criteria, and (2) further reduction of buses on network basis making use of genetic algorithms as 
an optimization tool. The proposed model, is applied to the transit network of the city of 
Burdwan, West Bengal, India. The reduction in fleet size is not significant using GA as it was 
expected during model formulation stage, the reason may be little overlapping of routes in test 
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network. It is recommended to test the model for dense transit networks with significant 
overlapping. The present study may also be extended by exploring the suitability of different GA 
parameters. 
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