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Abstract: With the development of science and technology, Automated Transportation 
Information System (ATIS) is actively recommended in communications management and the 
traffic control. The ATIS observers is provided with the information, such as, traffic counts of 
roads implemented by the sensor of traffic flow and both the location and movement of 
vehicle recorded by ATIS. The inputs of the estimation are the traffic counts on part of roads 
and the information of the vehicle movement recorded by ATIS. The output is the 
Origin-Destination (OD) matrix estimated by the use of GLS method. The initial sample 
sub-OD matrix from the vehicle with ATIS is estimated first and further the link choice 
proportion is obtained. Hence, the estimate of OD matrix is extracted from the partial 
information of the sub-OD matrix and the means of population information of traffic counts 
by using a statistical model. Its implementation is demonstrated by a numerical example. 
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1．INTRODUCTION 
  
Origin-Destination matrix is the basic data for the traffic planning and management. It is 
demand of traffic flows from origins to destinations, which is expressed as a matrix to explore 
the movement of space flow. Statistical techniques have become popular in the estimation or 
updating of OD matrix from traffic counts. There are many famous experts, such as Bell, 
Cascetta, Snikers, Nguyen, Willumsen, Weibul, Van Zuylen, Maher and McNeil etc, who do 
a lot of important work about OD matrix estimation from traffic counts. General commenting, 
previous statistical researches on OD matrix are based on traffic counts, link choice 
proportion and prior OD matrix. The link choice proportion is usually obtained by the traffic 
assignment model. Different traffic assignment model produces different link choice 
proportion. The original source of link choice proportion makes significant impact on the 
method and accuracy of OD matrix estimation. The prior OD matrix is generally originated 
from the survey with high cost and long term. However, the proposed method in the article 
can overcome the shortcoming that the prior OD matrix is generally originated from the 
survey and research method can not be updated in short time. It is worthful noted that the 
method can obtain the real-time and reliable data and update the OD matrix simultaneously. 
Especially, the proposed algorithms can be effective and improve precision of estimation of 
OD matrix. 
   
The rest of this paper is organized as follows. Statistical models with traffic counts and 
information from ATIS are firstly described in Section 2. Discussion of the model and 
algorithm are set in Section 3 and a numerical example is given in Sections 4. Finally, 
conclusions are given in Section 5. 
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2. THE MODEL OF OD MATRIX 
 
Let G(N,L) be a transportation network, N is the set of node and L is the set of link. O is the 
set of origin of the network and the number of the node is h. D is the set of destination of the 
network and the number of node is l. O and D are the subset of N. T is the set of 
origin-destination pairs of the network and the number of OD pairs is n. M is the set of the 
observed link and the subset of L. The number of the observed link is m. 
 
2.1 The Data Collection Using ATIS 
 
Suppose we need estimate one day or one week’s OD matrix in the network. gkx
（g=1,2,…,h；k=1,2,…,l）is denoted as the number of vehicles observed using ATIS from the 

origin g to the destination k. Let 'X  be sub-OD matrix of the vehicles observed using 
ATIS, gk h l

X x
×

′  =   . ijr （i=1,2,…,m；j=1,2,…,n）is denoted as the link choice proportion, 

which is the traffic counts using ATIS on the observed link i between the OD pairs j and the 
traffic counts of the OD pairs j using ATIS. Let R  is the matrix of link choice proportion 
using ATIS, ij m n

R r
×

 =   . ijp（i=1,2,…,m；j=1,2,…,n）is denoted as the link choice proportion, 

which is the traffic counts on the observed link i between the OD pairs j and the traffic counts 
of the OD pairs j. Let P  is the matrix of link choice proportion in the network, ij m n

P p
×

 =   . 

P andR  have the following relationship 
R P β= + .                                                     (1) 
β is random error, ij m n

β β
×

 =   , and ( ) 0E β = . Random errors are independent. 

Hence, ( ) ( ) ( ) ( )E R E P E E Pβ= + = .                               (2) 

Let ( )R E R= , ij m n
R r

×
 =   , ( )P E P= , ij m n

P p
×

 =   . 

Hence, P R= .                                                  (3) 
 
2.2 The Model 
 
gky （g=1,2,…,h；k=1,2,…, l）is denoted as the number of vehicles from the origin g to the 

destination k. Let 'Y  be OD matrix of the network, '
ij h l

Y y
×

 =   . ga （g=1,2,…,h）is denoted 

as the factor, which influencing the proportion of 'Y to 'X  by the factor of the original g. 
Let 'A  be the origin factor matrix, ( )'

1 2, ,..., hA diag a a a= . kb （k=1,2,…, l）is denoted as the 

factor, which influencing the proportion of 'Y to 'X  by the factor of the destination k. Let 'B  
be the destination factor matrix, ( )'

1 2, ,..., lB diag b b b= . 'Y and 'X have the following 
relationship 

' ' ' ' 'Y A X B α= + .                                               (4) 
'α  is random error, '

ij h l
α α

×
 =   , and ( )' 0E α = . The random errors are independent. In 

order to formulation, we can rewrite the equation (4) as  
Y AXB α= + .                                                  (5) 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol. 5, pp. 1188 - 1196, 2005

1189



Y is another form of OD matrix, [ ]11 12, ,.., hlY diag y y y= . X is another form of OD matrix of 

vehicles observed using ATIS, [ ]11 12, ,..., hlX diag x x x= . A  is another form of the origin factor 

matrix,

1

1

1

2

2

,0,...,0,...

0, ,...,0,...
...................
0,..., ,...,0

0...,0, ,...,0
.......................
0,...,0,..., ,...
......................
0,...,...,0,..., h

a

a

a

A a

a

a

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
  

. B is another form of the destination factor matrix, 

1

2

1

,0,...,0,...

0, ,...,0,...
..................
0,..., ,...,0

0,...,0, ,...,0
......................
0,...,0,..., ,...
......................
0,0,...,...,0,

l

l

l

b

b

b

B b

b

b

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
  

.α is another form of random error, [ ]11 12, ,..., hldiagα α α α= . 

Hence, ( ) ( ) ( ) ( ) ( )E Y E AXB E AXB E AE X Bα α= + = + = .              (6) 

iv（i=1,2,…,m）is denoted as the traffic counts on the link i. Let V be traffic counts matrix of 

the link observed, ( )1 2, ,..., T
mV v v v= . V and Y have the following relationship 

V PYI η= + .                                                    (7) 

I=[ ]1,1,...,1 T , [ ]1 2 3, , ,..., T
mη η η η η= , and ( ) 0E η = .The P is independent to Y. 

Hence, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )E V E PYI E E P E Y E I E P E Y Iη= + = = .      (8) 

Let V  be the average traffic counts matrix of the link observed during a certain period, 
( )1 2, ,..., T

mV v v v= . 

Hence, ( )e V E V= − = ( ) ( )V E P E Y I−  

= ( ) ( )V E P E AXB Iα− +  

= ( ) ( )V E P AE X BI− .                                  (9) 

Let ( )X E X= , [ ]11 12, ,.., hlX diag x x x= . 

Hence, ( ) ( )e V E P AE X BI= −  

=V PAXBI−  
=V RAXBI− .                                         (10) 

Hence, V RAXBI e= + .                                         (11) 
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The e is random error, and ( ) 0E e = . The random error and explanatory variable are 
independent. 
The estimations Ŷ AXB=  can be obtained by minimizing the objective function 

( ) ( )
,

min
TT

A B
e e V RAXBI V RAXBI= − − .                             (12) 

In addition to the statistical information of different periods, we can also establish an 
improved objective function 

( ) ( )
, 1

min
T

t t t t t t tA B t
V R AX BI V R AX BI

θ

λ
=

− −∑ .                         (13) 

tλ（t=1,2,…, θ ）is the weight of different periods andθ  is number of different independent 
periods. 
 
 
3. DISCUSSION OF THE MODEL AND ALGORITHM 

 
3.1 Discussion of Two Different Special Conditions of the Model 

 
3.1.1 B Is Constant Matrix and A Is Unknown Matrix 

 
While B is constant matrix and A is unknown matrix, we discuss the solutions of the model. 
Let 

( ) ( ) ( )
( ) ( ) ( )

11 11 1 11 1 1 12 1 1 1 21 12 2 1 1 1 1 1 1

21 21 1 11 2 1 22 2 1 1 21 22 2 2 2 1 1 1 2

... , ... ,..., ...

... , ... ,..., ...
........................

l l l l l l l h n l h n l hl

l l l l l l l h n l h n l hl

w r bx r bx w r bx r bx w r bx r bx

w r bx p bx w r bx p bx w r bx p bx
+ − +

+ − +

= + + = + + = + +

= + + = + + = + +

( ) ( )1 1 1 11 1 2 1 1 21 2 2 1 1 1

...........................................................................................................................
... , ... ,..., .m m ml l l m ml m l l l mh mn l hw r bx r bx w r bx r bx w r bx+ − += + + = + + = +( ).. mn l hlr bx






 +

, 

ig m h
W w

×
 =   . 

Hence, e V WA I′= − .                                           (14) 
Hence, V WA I e′= + .                                       (15) 
The estimations Ŷ AXB=  can be obtained by minimizing the objective function 

( ) ( )min
TT

A
e e V WA I V WA I′ ′= − − .                              (16) 

Hence, ˆT TW WA I W V′ = .                                    (17) 
Hence, ( ) 1ˆ T TA I W W W V

−
′ = .                                  (18) 

According to the mentioned above, it proves that Â is the best linear unbiased estimates. 
 
Theorem1. As to the least square estimate on AX=b, if the rank of A= ( )ij m n

a
×

is n（m>n）, that 

is if the columns of A are not linearly relative, there is only one solution to the problem of 
least squares estimate. 
 
As all the columns of W are independent to each other, W is not linearly relevant. Therefore, 
there is only one solution to (16). 
 
3.1.2 A Is Constant Matrix and B Is Unknown Matrix 
 
While A is constant matrix and B is unknown matrix, we discuss the solutions of the model. 
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Let 
11 11 1 11 1 1 1 12 12 1 12 1 2 2 1 1 1 1 1

21 21 1 11 2 1 1 22 22 1 12 2 2 2 2 2 1 1 2

... , ... ,..., ...
... , ... ,..., ...

......................

n l h h n l h h l l l n h hl

n l h h n l h h l l l n h hl

u r a x r a x u r a x r a x u r a x r a x
u r a x r a x u r a x r a x u r a x r a x

− + − +

− + − +

= + + = + + = + +

= + + = + + = + +

1 1 1 11 1 1 2 2 1 12 2 2 1 1

......................................................................................................................
... , ... ,..., ...m m mn l h h m m mn l h h ml ml lu r a x r a x u r a x r a x u r a x r− + − += + + = + + = + + mn h hla x








, 

[ ]ik m l
U u

×
= . 

Hence, e V UB I′= − .                                           (19) 
Hence, V UB I e′= + .                                           (20) 
The estimations Ŷ AXB=  can be obtained by minimizing the objective function 

( ) ( )min
TT

B
e e V UB I V UB I′ ′= − − .                                  (21) 

Hence, ˆT TU UB I U V′ = .                                         (22) 
Hence, ( ) 1ˆ T TB I U U U V

−
′ = .                                      (23) 

According to the mentioned above, it proves that B̂  is the best linear unbiased estimates and 
there is only one solution to (21). 
 
3.2 Quality of Solutions of the Model  
 

Let ( ) ( )T
f V RAXBI V RAXBI= − − .                              (24) 

 
3.2.1 Proposition 1. (24) is pseudo convex function to variable matrix A and B. 
 
Proof. Let B be constant matrix. Hence, (24) is convex function. Hence, ,a a R+′∀ ∈ , 

Hence, ( )
( ),

0T f a b
a a

a

∂
′ − ≥

∂
 and ( )

( ),
0T f a b

a a
a

′∂
′ − ≥

∂
. 

That is ( ) ( ), ,f a b f a b′ ≥  and ( ) ( ), ,f a b f a b′ ′ ′≥ .                     (25) 

Let A be constant matrix. Hence, (24) is convex function. Hence, ,b b R+′∀ ∈ , 

Hence, ( ) ( ),
0

T f a b
b b

b

∂
′ − ≥

∂
and ( ) ( ),

0
T f a b

b b
b

′∂
′ − ≥

∂
. 

That is ( ) ( ), ,f a b f a b′ ≥ and ( ) ( ), ,f a b f a b′ ′ ′≥ .                      (26) 

Hence, , , ,a a b b R+′ ′∀ ∈ ,  

( ) ( ), ,f a b f a b′ ′ ≥ .                                  (27) 

Hence, (24) is also pseudo convex function to variable matrix A and B. 
 
Theorem2. If ( )f x is pseudo convex function, ( )f x is strictly quasic convex function. 
 
Theorem3. Let R be convex set, ( )f x  is strictly quasic convex function, thus, the partial 

optimum solutions of the programming problem 
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                 ( )min f x
x R∈

 

is the global optimum solutions. 
 
Hence, the partial optimum of (12) is the global optimum solution. 
 
3.2.2 Proposition 2. The Estimations Ŷ  Obtained By (12) Is Unique. 
 
Proof. Let 1 1,A B and 2 2,A B be the global optimum solutions of (12). Hence, 1 1 1Ŷ A XB=  and  

2 2 2Ŷ A XB= . Put 1A  into (12). (12) translate (16). Since 1 1,A B  is the global optimum 
solutions of (12), 1B  is the global optimum solutions of (16). Hence, 1 1,A B  is also the global 
optimum solutions of (17). Put 1 1,A B  into (17). By formulating, we can obtain 

( ) 1

1 1
T TA XB I R R R V

−
= . Hence, as mentioned above, Put 2 2,A B  into (17). By formulating, 

we can also obtain ( ) 1

2 2
T TA XB I R R R V

−
= . Hence, 1 1 2 2A XB I A XB I= . Hence, 1 2̂Y Y= . Hence, 

the estimations Ŷ  obtained by (12) is unique. 
 
3.3 Algorithm 
  
It’s difficult to estimate parameters of such a complicated model directly with normal 
traditional algorithms. So, a new algorithm is designed here. The advantage of the algorithm 
is that it makes the calculation easier by reducing dimensions, especially for estimating the 
parameters of complicated model. Meanwhile, the algorithm overcomes the shortcomings of 
using the non-linear least square directly by making use of the advantage of linear least 
squares to estimate the OD matrix. The procedures of the proposed algorithm are shown as 
follows. 
 
Step1. 0A  and 0B  as original values are given and set the parameterτ of control. 

Calculate ( ) ( )0 0 0 0 0
T

f V RA XB I V RA XB I= − − . 

Step2. 1A  is generated by 0 0min Te e = ( ) ( )0 0
T

V RAXB I V RAXB I− − . Calculate 

( ) ( )1 1 0 1 0
T

f V RA XB I V RA XB I= − − . If the condition 0 1f f τ− ≤ is satisfied, 

let 0 1f f= , 0 1A A=  and go to step 4. Otherwise, go to Step 3. 

Step3. 1B  is generated by 1 1min Te e = ( ) ( )1 1
T

V RA XBI V RA XBI− − .Calculate 

( ) ( )2 1 1 1 1
T

f V RA XB I V RA XB I= − − . Let 0 1A A= ， 0 1B B= ， 0 2f f= . 

If the condition 1 2f f τ− ≤  is satisfied, go to step 4. Otherwise, go to Step 2. 

Step4. Calculate 0 0Ŷ A XB= .The process terminates.  
 
 
4．NUMERICAL EXAMPLE 
 
To demonstrate the use of the proposed method, suppose the following sampled data are 
available for the small synthetic network described. The proposed method is described by the 
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example. The network example is shown with 4 OD pairs in Figure1. The data is presented in 
Table1. 

 
 

Table1. Data of the Network Example 
OD Pairs 1P  2P  3P 4P 5P 6P Sub-OD Actual OD 

From 1 to 5 1 0 0.4 0.6 1 0 100 120 
From 1 to 6 1 0 0.5 0.5 0 1 60 80 
From 2 to 5 0 1 0.8 0.2 1 0 50 60 
From 2 to 6 0 1 0.7 0.3 0 1 80 100 

Traffic Counts 200 160 210 160 180 180   
 

Table2.Two Methods of OD Matrix Estimation 
Estimation Methods 11y  12y  21y  22y  Error Precision 

the New Estimation Method 122 79 59 102 0.86% 
the Old Estimation Method 115 79 62 95 1.66% 

 
Programs of OD matrix estimation have been written in the Matlab programming language. 
The result of OD matrix estimation is showed in Table2. The error precision is measured by 
average relative error, which is  

20

0

100%

ij ij

ij ij

y y
y

E
n

 −
  
 = ×

∑

.                                     (28) 
In order that the new least square method compare with old least square methods, we take the 
sub-OD matrix as the prior OD matrix to estimate OD matrix. We select a traditional least 
square method, which is 

( ) ( ) 0 0min ( ) ( )TT Te e V PY V PY Y Y Y Y′′ ′′ ′′ ′′ ′′ ′′= − − + − − ,              (29) 
11 12[ , ,..., ]hlY y y y′′ = . 

The result of OD matrix estimation is showed in Table 2. Comparing the error precision of the 
two methods, the results show that the error precision of the new method is 0.86% and the 
error precision of the old method is 1.66%. The error precision of the new method is less. 
Therefore, the error precision is quite acceptable. It also illuminates performance of the new 
method is very good. 
 
Moreover, we can change the sub-OD matrix to test the new method. The new sub-OD matrix 
can be generated by random numbers of normal distribution. We can obtain a group of data of 
the sub-OD matrix and the result is showed in Table 3. The average error precision of the new 
method is 0.76% and the error precision of the old method is 5.61%. The error precision of 

1 

2 

3 4

5

6

1 

2 

3

4

5

6

Figure1. A Simple Network 
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the new method is sensational. The results show that the new method has very good stable 
performance. 
 

Table3. OD Matrix Estimation by Changing the Sub-OD Matrix 
Sub-OD the New Method the Old Method 

11x  12x  21x  22x  11y  12y 21y 22y E  11y 12y 21y  22y  E  
60 40 30 50 121 80 60 100 0.44% 102 82 65 85 5.59%
60 39 29 49 121 79 59 101 0.60% 103 82 65 85 5.48%
59 39 30 49 120 81 60 100 0.50% 102 82 65 85 5.73%
60 40 31 49 120 81 61 99 0.89% 102 82 66 85 5.86%
60 40 30 49 120 81 60 100 0.56% 102 82 65 85 5.72%
60 40 28 49 122 79 59 101 0.69% 103 82 64 85 5.44%
61 41 28 49 121 79 59 101 0.61% 103 82 64 85 5.43%
56 35 29 52 123 77 57 103 1.74% 102 80 64 87 5.19%
55 31 33 47 121 80 60 101 0.43% 101 80 67 85 6.16%
60 43 24 47 122 78 58 102 1.14% 103 83 64 85 5.51%

 Average Error 0.76% Average Error 5.61%
 

Table4. OD Matrix Estimation by Reducing the Observed Links 
 Average Error of the New Average Error of the Old 

Reducing One Observed Link 1.05% 1.93% 
Reducing Two Observed Links 1.94% 2.44% 

 
Further, we can also study the result of OD matrix estimation by reducing different observed 
links. The result of OD matrix estimation is showed in Table4. When we reduce a different 
observed link one by one, we can obtain the error precision of six conditions. The average 
error precision of the new method is 1.05% and the average error precision of the old method 
is 1.93%. The error precision of the new method is less. In addition, when we reduce two 
different observed links one by one, we can obtain the error precision of fifteen conditions. 
The average error precision of the new method is 1.94% and the average error precision of the 
old method is 2.44%. The error precision of the new model is also less. It can testify the 
model has good quality. Therefore, it validates the new OD matrix estimation method is 
steady and reliable. 
 
 
5. CONCLUSION 
 
The paper proposes the OD matrix estimation model by the use of GLS method. The new 
approach is advantageous in three aspects: (1) The link choice proportion is obtained by using 
ATIS. It offers a new method for getting the original source of link choice proportion. And it 
can be updated in short time and improves accuracy of OD matrix estimation. (2) Due to the 
sub-OD matrix replacing the prior OD, the proposed method can obtain the real-time and 
reliable data of OD matrix in short time and update the OD matrix simultaneously. (3) The 
proposed method makes better use of related data and information. Not only that results 
obtained from different periods of time can be combined and utilized for the estimation of OD 
matrix, but additional information related to the reliability and variations of the observed 
values can also be incorporated into the model. In addition, this paper proves the uniqueness 
of solutions of OD matrix estimation. And by the numerical example, it demonstrates the 
applicability of the new model and it shows that the new model can be effective and improve 
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precision of OD matrix estimation.  
 
Some future extensions of research work are suggested. The algorithm should be further 
studied. The model for a large-scale network can be explored. The model can also be 
extended to a dynamic framework. 
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