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Abstract: To accommodate the heavy travel demand in high-density areas, Taipei Bus 

Station (TBS) is developed as the first multi-level bus terminal in Taipei City. TBS also plays 

important roles in congestion mitigation, energy conservation and pollutant reduction. Unlike 

conventional single-level terminals, bus flow interruption while circulating in TBS could 

significantly impact the service quality and deteriorate environmental condition. Considering 

time-varying demand and existing Radio Frequency Identification (RFID) monitoring 

systems, this study constructed an adaptive signal control model combining an artificial 

neural network (ANN) demand forecasting model to manage bus traffic in TBS. In the case 

study, the self-retraining demand forecasting algorism is programmed in existing 

controller/computer to facilitate demand changes. The proposed model has demonstrated 

itself very efficient in reducing congestion within the terminal. 

 

Keywords: multi-level terminal, adaptive traffic control, artificial neural network, 

self-retraining 

 

 

1. INTRODUCTION 

 

Most public transportation systems, either highway or rail, are prone to various operational 

problems, including congestion, delays, poor on-time performance, high costs, and 

deteriorating quality of travel experience. However, there are some cases in which system 

performance can be elevated with new infrastructure, technology, and/or service and 

management innovations. 

Many studies have focused on location planning of a transit facility adjacent to potential 

destinations for large numbers of transit passengers. Optimizing the performance of transfer 

centers such as bus terminals and major train stations is also a popular subject in this field. 

The transit industry is not exempt from the trend toward increased use of new technologies. 

Global-positioning-systems (GPS) and other location technologies (e.g. RFID Systems) can 

be coupled with wireless communication, enabling transit vehicles to be tracked in real-time. 

These technologies make it possible to control and coordinate transit vehicle movement 

en-route, enhancing the connectivity between bus lines at transfer terminals. 

The Taipei Bus Station (TBS), inaugurated in 2009, is the main terminal and hub for 

intercity bus services. It is situated at the crossing of two major arterials (Cheng-De Road and 

Civil Boulevard) in Taipei Metropolitan Area. TBS is a three-level terminal with 39 gates for 
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regular operations and hosts 11 companies serving 40 inter-city express bus routes. Figure 1 

shows building structure, bus circulation configuration and RFID detector locations of TBS. 

There are two exits for buses, the Cheng-De exit and the Civil Boulevard exit, both located on 

the 3
rd

 floor. TBS had been equipped with a RFID system to monitor the circulation of buses, 

marking the first application of RFID to a transit terminal. There are more than 200 buses 

each hour entering TBS during peak periods. Traffic flows interrupting and merging at 

driveway junctions tend to decrease the operating efficiency, especially at the Cheng-De exit, 

where significant congestion is often experienced during peak periods. A traffic light has been 

set to manage flows merging at Cheng-De exit. However, the effect is quite limited due to the 

fixed timing plan that cannot accommodate time varying bus flows. 

 

 
Figure 1. Internal Layout of TBS 
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Wei et al. (2011) proposed an analytical signal control model, a pre-timed approach, to 

minimize the delay at the Cheng-De exit. This study further improves the signal control 

strategy for Cheng-De exit enabled by wireless communication and vehicle tracking 

technologies. The proposed adaptive control method in this paper decides the timing plan 

using an ANN model calibrated by Wei et al. (2013) to forecast the bus flow approaching the 

target junction. This flow forecasting method is based on traffic information collected at 

upstream sites selected by circulation analysis in TBS. Figure 2 shows the structure of 

adaptive signal control model for TBS. The proposed model is calibrated and tested with 

real-world data collected from RFID readers.  

 

 
Figure 2. Adaptive Signal Control Model Structure 

 

The remainder of this paper is divided into five sections. Section 2 presents a review of 

the literature on improvements of bus terminal operations in traditional and multi-level bus 

terminals, and previous studies of TBS on signal control methods. In Section 3, the 

architecture of the adaptive control model for TBS and model performance assessment is 

presented. Section 4 provides a self-retraining structure to improve model performance 

continuously and programs a preliminary testing. Section 5 presents the sensitivity analysis. 

Finally, Section 6 summarizes findings and suggests subjects for further research. 

 

 

2. BACKGROUND AND LITERATURE REVIEW 

 

There are many ways to improve transit service quality, including reduced crowding, 

increased service frequency, nicer waiting areas, and better user information (Litman, 2008). 

Traditional transport evaluation methods tend to focus on cost-effective transit improvement 

strategies, resulting in under-investment in transit service quality improvements. Such 

circumstances in turn make transit less attractive compared to automobile travel. Service 

quality improvements that reduce the unit cost of travel time provide benefits that are 

comparable to speed improvement in reducing total travel time. 
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Another way to improve transit service quality is providing transit users with real-time, 

reliable information at bus stops and terminals (e.g., signs, printed and posted schedules, 

conventional and automated telephone services, transit websites, changeable signs or monitors 

at stations and stops, and announcements). New technologies for predicting next vehicle 

arrival time at a particular destination have been articulated with real-time information 

provided to transit users. 

Conventional planning practices tend to solve problems and focus on service quality 

issues in single-level bus terminals. However, transit systems must handle greater traffic loads 

as populations in urban area continue to increase, particularly in central districts. Multi-level 

transportation terminals represent a solution to this problem, and have become a trend in 

high-density areas. Thus, improving multi-level terminal operational performance is a critical 

task in major cities around the world. 

Traffic control systems evolved through several generations. The first generation of 

such systems has been based on historical traffic data. The second generation took advantage 

of detectors, which enabled the collection of real-time traffic data, in order to re-adjust and 

select traffic signalization programs. The third generation provides the ability to forecast 

traffic conditions, in order to have traffic signalization programs and strategies pre-computed 

and applied at the most appropriate time frame for the optimal control of the current traffic 

conditions (Mitsakis, 2011). 

Significant delay occurs during peak periods at the Cheng-De exit of TBS. Taking into 

consideration TBS geographic constraints and operational characteristics, Wei et al. (2011) 

optimized signal timing to reduce the delay. The proposed model clearly indicates the 

relationships among flow rate, capacity, discharge time, and delay. The delay is sensitive to 

discharge time allocated for each direction, especially at peak periods with high traffic 

volumes. Results show that performance of the proposed model is promising. Reduction of 

delays by 22%-38% was observed at different times of the day. 

Adaptive signal control, the latest generation of dynamic signal control methods, refers 

to any signal control strategy that can adjust signal operations in response to fluctuating traffic 

demand and achieve greater efficiency than pre-timed systems in stops, delays, and emissions. 

Among the adaptive control strategies, the Sydney Coordinated Adaptive Traffic System 

(SCATS) and Split, Cycle and Offset Optimization Technique (SCOOT) models have been 

applied in several cities to achieve transportation system effectiveness and efficiency. 

However, these two models are designed mainly for unban street systems and configuration is 

too complex to deploy in TBS.  

Different techniques have been considered to enhance traffic control performance and to 

minimize traffic delay. Applications with fuzzy logic in controlling traffic signals have been 

used since the 1970s. The strength of fuzzy logic lies in its capability of simulating the 

decision-making process of a human, a process that is often difficult to define with traditional 

mathematical methods. 

Zaied and Othman (2011) proposed a system to change green light duration involving 

fuzzy factors and tested it using real data collected from signalized intersections. It provided 

good results compared to a pre-timed control strategy when considering heavy traffic volumes 

due to reducing the unused green time and accelerating the phase’s sequences. Keyarsalan and 

Montazer (2011) discovered that traffic light control domain using a fuzzy ontology made 

lower average delay time concerning weather and congestion conditions when applied to 

isolated intersections. Modeling knowledge of this domain helps traffic agents and application 

examples manage traffic efficiently regarding real-time conditions. 
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It is known that the human brain and nervous systems have enormous capabilities of 

pattern recognition in sensory perceptions. ANNs are models used to emulate the human 

pattern recognition function through a similar parallel processing structure of multiple inputs 

(Jain et al., 1997). After studied for decades, the improved BP neural network provides a new 

and feasible thought to predict. The main idea of the BP neural network is as follows: For the 

given learning samples, the network inputs are made to be equal to the samples’ outputs. Then 

the weight is revised by the error between the practical outputs and the learning samples’ 

outputs and the network output values and the samples’ output values are made to be close as 

possible (Wang et al., 2007). 

Hwang (1994) applied ANN to forecast vehicles turning ratio at each intersection and 

satisfactory performance was obtained for a practical urban network case. Hsu (2003) 

constructed a traffic control system possessing the capabilities of ANN and demonstrated the 

flexibility of ANN to fulfill the function of traffic adaptive signal control systems. 

To improve operational efficiency of TBS, Wei et al. (2013) shortened the control time 

intervals and developed an ANN traffic forecasting model with an embedded RFID 

monitoring system throughout TBS. It is found that separate forecasting models for peak 

hours and non-peak hours would be desirable for both directions approaching Cheng-De exit. 

The best ANN model for Direction 1 uses flow rates as inputs on all upward slopes, 

computing by gradually learning rate training method with only 1 hidden node. For Direction 

2, the optimal ANN model requires flow rate square root forecasting by 9 detecting data (8 

readers embedded on each upward slope and 1 at Direction 2) computing by scaled conjugate 

gradient training function with 5 hidden nodes. 

The timing functions and ANN forecasting models synthesize the detecting data to 

identify current and short-term future flow conditions. This makes it possible to propose an 

adaptive signal control model that uses the identified flow conditions to make intelligent 

signal timing decisions. 

 

 

3. ADAPTIVE CONTORL MODEL DEVELOPMENT 

 

The proposed adaptive signal control model (Figure 2) combines an analytical signal timing 

model and demand responsive mechanism, the ANN forecasting model. According to 

real-time up-stream detecting data provided by RFID systems, the ANN model predicts flow 

rates in next time period for Directions 1 and 2 respectively. Then, the optimized timing plan 

is computed by timing functions. In this case, Direction 1 is defined as the flows coming from 

4
th

 floor; Direction 2 is flows circulating on 3
rd

 floor (please refer to Figure 1). Section 3.1 

and Section 3.2 introduce the advanced analytical signal model and ANN forecasting model, 

respectively. In Section 3.3, the architecture of adaptive control model and performance are 

presented. 

 

3.1 Analytical Signal Timing Model 

 

The model proposed originally by Wei et al. (2011) shows the relationship among flow rates, 

capacity, queue length, and delay (Figure 3). The optimal discharge timing can be derived 

from the cyclical queuing processes resulting from predicted flows in different directions 

under ideal situation. The signal timing equations are expressed as Eqs. (1) and (2). 
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Figure 3. Flow Rate and Queue Length over Time (under saturated) 

 

 

 

     
                       

                   
                           (1) 

     
                       

                   
                           (2) 

where, 

tdn: Discharge time of Direction d at time interval n (sec.); 

Qdn: Flow rate of Direction d at time interval n (vehicles per hour); 

       : Capacity of Direction d (vph), derived by inverse of minimum discharge 

headway of Direction d (hd, hr.); 

        : Clearance time of Direction d (hr.), derived by distance of passing through 

intersection (Kd, km) divided by average discharge speed (sd, kph); 

tr: Average driver response time (hr.); 

Ld: Maximum allowable queue length of Direction d (m); 

l: Average vehicle length (m); 

d: Average space gap between vehicles (m). 

 

In reality, residual queue often occurs when demand exceeds the capacity or discharge 

time is not enough to clear the waiting vehicles as indicated in Figure 4. This situation is 

particularly worth noting if the signal timing design is based on shorter time intervals in 

which flow fluctuation may cause exceeding demand and resulting in queues. Given the 

optimal signal timings estimated by Eqs. (1) and (2), the residual queue should be considered 

when cumulative demand is larger than service capacity as shown in Figure 5. 
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Figure 4. Flow Rate and Queue Length over Time (over saturated) 

 

 
Figure 5. Cumulative Demand vs. Served Buses (over saturated) 
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For estimating signal control delay in any situations, delay functions for Directions 1 and 

2 can be written as Eqs. (3) and (4), respectively. 

 

     
 

 
               

 

 
                                                       

                                                 (3) 

     
 

 
               

 

 
                                                       

                                                 (4) 

where, 

Ddn: Hourly delay of Direction d at time interval n (vehicle-seconds per hour, vsph); 

i: Serial number of cycle in one hour (times); 

 

3.2 ANN Bus Flow Forecasting Model 

 

Applying the forecasting models developed by Wei et al. (2013), the ANN forecasting model 

for Direction 1 requires flow rates detected on each upward slope as input variables. The 

gradual learning rate training method with only 1 hidden node is assessed as the most efficient 

construct. For Direction 2, the flow rate is forecasted in square root while the input layer 

consists of 9 detecting data (8 RFID readers embedded on each upward slope and one near the 

Cheng-De exit on Direction 2). The corresponding ANN model is based on scaled conjugate 

gradient training function with 5 hidden nodes. Evaluation results show that separate 

forecasting models for peak hours and non-peak hours are desirable for both directions. Table 

1 summarizes the parameters of forecasting modules and performances. The time period for 

iterative forecasting is set as 10 minutes, the average in-terminal time (including routing time 

and on-board/off-board time), for reasonably responding to alternates of flow rate. The 

average forecasting error of each direction is less than 3.5 buses for a 10-minute updating 

interval. 

 

Table 1. ANN Traffic Forecasting Models and Performance 

Direct- 
ion 

No. of 
Inputs 

No. of 
Hidden 
Nodes 

Training 
Method 

Learn 
Rate 

LR 
decre- 
ment 

Data RMSE MAPE 
Ave. 
Error 

(buses) 

Dir 1 3 1 
Gradual 
Learning 

Rate 
0.05 0.7 

Peak 0.14 0.36 1.93 

Non-Peak 0.13 0.41 1.60 

Dir 2 9 5 
Scaled 

Conjugate 
Gradient 

- - 
Peak 0.09 0.12 3.49 

Non-Peak 0.11 0.21 2.34 

Note: RMSE (Root Mean Square Error) =              
      ; 

MAPE (Mean Absolute Percentage Error) = 
 

 
                

         . 

 

 

3.3 Adaptive Control Model Testing 

 

As Figure 2 shows, the adaptive signal control model for the Cheng-De exit was developed 

using the ANN traffic forecasting model to predict the coming traffic flows. A time-dependent 

signal timing function determines the optimal cycle length and green time in each 10-minute 

interval based on the predicted flow rates. With the ANN forecasting model, the discharge 

times are estimated and deployed with less congestion responding to variable flow rates over 

time. 
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Table 2 shows the performance comparison of current, pre-timed, and adaptive control 

methods. In this case, with operators’ observations and field investigation, the minimum 

discharge headways (h1 and h2) are both 5 sec.; clearance times (r1 and r2) are 12 sec. and 11 

sec., respectively; average driver response time is 1.3 sec.; maximum queue lengths (L1 and L2) 

are 70 meters and 60 meters; average vehicle length is 12 meters; the average space gap 

between vehicles is one meter. 

The current green time duration for Direction 1 at the target intersection is 20 seconds 

fixed, and 40 seconds fixed for Direction 2. The pre-set timing plan in this study is chosen 

according to average time-of-day flow rates during one month. Figures under the “Ideal” 

column are the minimum hourly delays while discharge times are estimated by real flow rates. 

By performing the proposed adaptive control method, the lowest average hourly delay was 

achievable. The results are very promising, which can reduce 51% and 26% delay for traffic 

on Directions 1 and 2, respectively, compared to the current control method. The advantage of 

adaptive control model may be more significant on extreme occasions, ex. long holiday 

period. 

 

Table 2. Model Performance Results 

Period Direction 
Average Hourly Delay (unit: vehicle-second per hour, vsph) 

Ideal* Current Pre-timed Adaptive 

Peak 
1 589 1,205 599 592 

2 1,234 1,691 1,282 1,259 

Non-peak 
1 336 732 343 338 

2 536 753 557 557 

* The minimum hourly total delay while discharge times are estimated by real flow rates and the optimal 

timing plans. 

 

Wei et al. (2011) discovered that the discharge time for Direction 1 during peak hours is 

17-18 seconds and 19-20 seconds for Direction 2. This indicates that the current timing plan 

operates with low efficiency, especially in Direction 1 where the average waiting time is 

doubled. As a main intercity bus terminal at the heart of a large city, TBS must maintain high 

efficiency all the time. This necessitates an adaptive control method for Cheng-De exit, which 

is the most congested node during peak hours in the terminal 

 

 

4. PRELIMINARY TEST OF SELF-RETRAINING STRUCTURE 

 

4.1 Self-Retraining Algorism and Operating Procedure 

 

The proposed adaptive signal control model includes an on-line self-retraining mechanism to 

avoid RFID malfunction and flow forecasting error. It also facilitates the needs to renew 

signal timing plans when conducting alternation of daily scheduling of routes and platforms in 

the future. Figure 6 shows the on-line operating procedure that accommodates the proposed 

self-retraining feature. The control method includes a pre-timed timing plan and real-time 
adaptive timing plan estimated with forecasted flow rates. The steps are explained as follows: 
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1) Considering system computational load and the possibility of adaptive control 

system breaking down, control at the Cheng-De exit is set default as the pre-timed 

mode. As the ANN forecasting model monitoring the variation in the flow rates, the 

optimal timing plan will be computed and applied basing on the flow rates. The 

more details are as below. 

2) Prior to evaluation, the ANN forecasting model and database of pre-set plans shall 

be well prepared and installed to the current control systems in TBS. 

3) As the ANN model receives the flow rates of the previous time interval (T = t - 1), 

forecasting the flow rates merging at the junction next to Cheng-De exit will be 

activated for the target time interval (T = t). 

4) Based on the forecasted flow rates, an adaptive timing plan (BT) is optimized by the 

proposed adaptive control model. The adaptive phasing plan will be executed at 

time interval t if it differs from the pre-set timing plan; otherwise, the pre-timed 

plan (AT) is applied. 

5) While performing the adaptive signal plan at time interval t, record the actual bus 

flow rates. 

6) Before the end of interval t, evaluate control performance (i.e. hourly delay) of the 

prevailing timing plan (either pre-timed plan AT or adaptive timing plan BT), and 

compare to ideal timing plan based on actual arrival flow rates at Cheng-De exit. If 

the difference is greater than allowable tolerance (p%), the self-retraining 

mechanism will commence. 

7) Tolerance is the minimum increment of hourly delay that determines whether ANN 

model retraining (i.e., weights recalibration) is required. Verification should be 

conducted for both Directions 1 and 2 for each time interval. 

8) If the ANN model is retrained, the weights of the ANN model are revised according 

to the prediction error. Then, the retrained model is used to predict the flow rates of 

the next time interval (T = t + 1). Alternatively, if a timing plan is applied and 

performs well, the adaptive timing plan will replace the pre-timed plan at time t. 

That is the advantage of self-retraining for route-platform reassignment. 

9) Repeat Steps 3 to 8. 
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Figure 6. On-Line Operating Procedure 
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The preliminary test of the proposed procedures was conducted off-line using data 

extracted from RFID database for a whole week, 2012.04.15 00:00 (Sunday) - 2012.04.21. 

23:59 (Saturday). Excluding the last time interval, the sample size for pre-testing was 1,007. 

To facilitate the test, the model retraining function adopted a fixed learning rate, and was 

programmed using Visual Basic for Applications (VBA). This study then compares several 

learning rates (i.e., 0.8, 0.5, 0.1, 0.05, and 0.01) to find the optimal learning rate for future 

practical applications. 

The tolerance of retraining is the difference in total hourly delay between the estimated 

timing plan and the ideal timing plan. If the difference between the ideal total hourly delay 

and estimated delay is larger than p%, as in Eq. (5), the ANN forecasting model needs 

adjustment. The total hourly delays are summations of Eq. (3) and (4) computed for each 

timing plan. 

 

               
                                                           

                            
     (5) 

 

Tolerance p may be determined by verifying the relationship between error of combined 

flow rate and total hourly delay increment. Figure 7 shows the total hourly delay increment 

versus error of combination hourly flow rate (the total hourly flow rates merging to Cheng-De 

exit) under various traffic volumes. The delay curve increases exponentially as the error 

increases. A higher flow rate leads to a greater delay increment ratio. As Figure 7 depicts, this 

study uses p = 5% to facilitate precise calibration of ANN models. To examine the impact of p 

on signal control efficiency, different p values are tested in Section 5. 

 

 
Figure 7. Delay Increment vs. Estimating Error of Combination Hourly Flow Rate 
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Table 3 presents the performance comparison of various control methods, including fixed 

ANN model without retraining. Adaptive signal control with fixed ANN model improves the 

control efficiency, achieving a 34.7% delay reduction in contrast to the current control. The 

method performs even better with retrained ANN models. When various levels of learning 

rate are applied, additional 2%-5% delay reduction is attained comparing to the pre-timed 

control method. It is interesting to note that as the learning rate increases, the hourly delay of 
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Direction 1 increases, whereas Direction 2 decreases. The minimum total delay is found for 

the ANN model with a learning rate equal to 0.1. 

 

Table 3. Model Performance of On-Line Preliminary Testing 

Index Current Ideal 
Pre- 

timed 

Fixed 

ANN 

Model 

Retraining ANN Model 

LR=0.8 LR=0.5 LR=0.1 LR=0.05 LR=0.01 

Avg 

Hourly 

Delay 

Dir 1 1,117 554 559 495 572 567 538 516 505 

Dir 2 1,440 1,055 1,153 1,176 1,052 1,079 1,083 1,130 1,153 

Total 2,557 1,609 1,712 1,671 1,624 1,646 1,621 1,646 1,658 

Reduction (%) - 37.1 33.1 34.7 36.5 35.6 36.6 35.6 35.2 

 

 

5. SENSITIVITY ANALYSIS 

 

Table 4 shows the model performance with respect to the signal timing adopted and the 

resulting hourly delay under different tolerances for non-peak hours while peak hours are set 

as 0.05 constantly. Relaxing the tolerance for non-peak periods significantly reduces 

retraining desired, but slightly increases the total hourly delay. In other words, loosening the 

retraining threshold can reduce the computational burden of the forecasting model, while 

avoiding a significant increase in total delay. 

The sensitivity analysis in this study shows that the On-Line self-retraining tolerance for 

peak periods should be set at 0.05 and 0.25 for non-peak periods. 

 

Table 4. Sensitivity Analysis of Tolerance for Non-peak Hours 

Index 
Retraining ANN Model 

p=0.05 p=0.10 p=0.15 p=0.20 p=0.25 p=0.30 

Dir 1 

Times of BT 

applied 

Peak 343 343 343 343 343 343 

Non-peak 161 180 170 163 176 265 

Times of AT 

applied 

Peak 164 164 164 164 164 164 

Non-peak 339 320 330 337 324 235 

Dir 2 

Times of BT 

applied 

Peak 484 484 484 484 484 484 

Non-peak 363 381 400 410 412 412 

Times of AT 

applied 

Peak 23 23 23 23 23 23 

Non-peak 137 119 100 90 88 88 

Times of retraining 
Peak 210 210 210 210 210 210 

Non-peak 97 70 57 48 39 16 

Overall Average 

Hourly Delay 

Dir 1 538 537 536 533 532 532 

Dir 2 1,083 1,090 1,098 1,096 1,094 1,102 

Total 1,621 1,628 1,634 1,628 1,626 1,634 

 

 

6. CONCLUSIONS 

 

Transit systems are strategic solutions to the problem of heavy traffic in high-density areas, 

and more importantly, energy conservation and pollution reduction. Multi-level terminals are 

becoming the main terminal structures for cities with high population density (e.g. Taipei, 

Taiwan and Beijing in mainland China). 
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Unlike a single-level terminal, flow interruption is a critical operational issue in TBS. 

This paper presents a case study to apply the proposed adaptive signal control model for 

managing bus traffic within a multi-level bus terminal. The adaptive control model optimizes 

signal timings subject to forecasted bus flow with an ANN model. Results indicate that the 

adaptive control model improves operational efficiency without requiring additional 

equipments. 

This study devises, assesses, and tests a self-retraining method to tackle such potential 

issues as RFID malfunction, forecasting error, and daily scheduling alternation of routes and 

platforms. One-week data were applied to appraise the model performance. Results show that 

varying the timing plan dependent on forecasted demand may yield a 34.7%-36.6% decrease 

in hourly delay, compared to that of current fixed timing plan. Given the adaptive signal 

control methods with appropriate learning rates, additional 2%-5% delay reduction may be 

expected. 

To loosen the retraining threshold and computing loading for non-peak hours with fewer 

traffic demands, this study tests several tolerance values for non-peak hours operations. 

Results show that relaxing the retraining threshold can decrease the burden of re-computing 

weights of ANN models with fairly minor delay increase (only around 1%). The suggested 

self-retraining tolerance for peak and non-peak periods are 0.05 and 0.25, respectively. 

There is one recommendation to further study. Cheng-De Road is a major arterial in 

Taipei City, and Hua-Yin/Cheng-De intersection is near to Cheng-De exit on ground level. A 

coordinating timing plan for these two intersections is necessary to avoid traffic spill back to 

TBS. 
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