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Abstract: This paper presents vehicular movements of a dynamic car-following platoon 

consisting of ten vehicles that falls between macroscopic and microscopic models.  The data 

included acceleration from stop condition, deceleration to stop condition, and car-following 

condition with some speed perturbations.  In addition to the analysis of individual 

leader/follower car-following relationships, two platoon models were developed for analyzing 

inter-vehicle relationships among any vehicles in the platoon.  The results of our study 

showed that the correlations of the platoon models increase as the number of vehicle increases 

in the analysis platoon.  The trajectory data of the entire platoon were also applied to 

investigate the data fittings to the several major macroscopic models.   Many of the major 

macroscopic traffic stream models fitted well on the platoon data sets with high correlation 

ratios as showing appropriate values of the maximum flow rates and jam densities. 

Keywords: Macroscopic, Microscopic, Traffic Stream Models, Car-Following Platoon, 

Platoon Size 

1. INTRODUCTION

Many macroscopic traffic stream models have been developed based on the variables 

observing tens of thousands of vehicles at real freeway segments.  At the same time, 

microscopic models have been developed based on experiments observing variables of only 

two vehicles called a leader and a follower.  Several macroscopic and microscopic models 

have been mathematically connected together and have common models representing both 

traffic flow aspects.  However, there have not been many studies between these two different 

aspects due to the lack of the data sets. 

Recently, due to the technology development, observation and data collection of car-

following conditions became available with using GPS.  There were almost no data sets of a 

car-following platoon consisting of more than several vehicles in past.  However, the 

advanced GPS technologies enabled us to observe a long car-following platoon with good 

accuracy in these days.  In this paper, RTK GPS was utilized and ten-vehicle dynamic car-

following data was observed with tracking all vehicles’ trajectories.  The data sets were 

supposed to fall in the region between microscopic and macroscopic traffic flow aspects.  

Therefore, the car-following data sets were analyzed as a platoon instead of a leader/follower 

car-following relationship between two vehicles in this study.  The relationships between the 

platoon size and correlations to the traffic stream models were investigated in order to 

measure the connection strengths to the macroscopic and microscopic traffic stream models.   
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2. BACKGROUND 

 

Microscopic car-following models started with a simple linear relationship between driving 

speed and distance headway with the vehicle running in front of the subject vehicle introduced 

by Pipes (1953).  Forbes and Zagorsk (1958) introduced the same car-following model, but 

using speed and time headway instead of space headway.  After these speed-distance models, 

researchers at General Motors Company (GM) established a series of car-following models 

called stimulus-response system.  In this car-following system, stimulus is represented by 

relative speed between a leader and a follower and response is represented by acceleration of 

the follower as shown in equation (1).   

 

  1( ) ( ) ( )n n nx t T x t x t     (1) 

 

where xn(t) is the position of the n
th

 vehicle at time t, T is a reaction time of the n
th

 vehicle, and 

  is the sensitivity factor. 

 

GM researchers, Gazis, et al. (1961), developed further to generalize car-following 

models.  They considered that the sensitivity factor can be as simple as a constant value, but 

also can consider the influence of vehicle speed and distance headway upon the sensitivity as 

shown in equation (2).  This generalized car-following equation is called the GM model. 
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where  , l, and m are model parameters.  It is known that equation (2) can represent many of 

car-following models introduced in past.  For example, the equation becomes Pipes’ and 

Forbes’ models when l = 0 and m = 0.  In case l = 1 and m = 0, the equation becomes the 

GM’s third model and it becomes the GM’s fourth model with l = 1 and m = 1.  This well-

known GM’s car-following model is also famous of making its connection to the macroscopic 

traffic stream models. 

On the other hand, macroscopic traffic stream models also started with a simple linear 

relationship model between density and speed proposed by Greenshields (1935).  Since then, 

macroscopic traffic stream models were further developed to better fit observed macroscopic 

data sets in various places in the US.  These macroscopic traffic stream models were 

developed by Greenberg (1959), Underwood (1961), Drake,at al. (1967) showing non-linear 

relationships between density and speed.  Finally, the macroscopic traffic stream model by 

GM researchers, Gazis, et al. (1959; 1961), became a well-known model representing most of 

the single regime models with different parameters.  Equation (3) shows the well-known 

GM’s traffic stream model. 
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 for 0 ≤ m < 1, l > 1 (3) 

 

where l, and m are model parameters.  This equation is originally derived from the car-

following equation (2) and special cases are applied to transform logarithmic and exponential 
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functions when m = 1 and l = 0.  Equation (3) can represent most of previously introduced 

traffic stream models such as Greenshields model when l = 0 and m = 2, Greenberg model 

when l = 1, m = 0, Underwood model when l = 2 and m = 1, and Northwestern model when l 

= 3, m = 1. 

While many researchers were proposing single regime models, some researchers were 

developing models with multi-regimes such as Edie (1961) and Quandt (1958; 1960).  After 

introduction of multi-regime models, other unique traffic stream models were developed with 

free flow and congested flow separation such as the three dimensional catastrophe model by 

Persaud and Hall (1989), the three-phase traffic flow model by Kerner (2004), and the neural 

network model by Nakatsuji et al. (1995).  These models emphasize the difference of 

characteristics between free flow and congested flow and show data jumps between the two 

different traffic flow conditions in macroscopic traffic flow variables. 
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a) Schematic Layout of the Test Track 

 
 

b) Vehicle Location ID in the Ten Vehicle Car-Following Platoon 

 

Figure 1. Test Track and Ten Vehicle Car-Following Platoon in the Experiment 
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(a) Half Wave Pattern (Car-Following)  (b) One Wave Pattern (Car-Following) 
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(c) Two Wave Pattern (Car-Following)  (d) Three Wave Pattern (Car-Following) 
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(g) Three Peaks Pattern (Start & Stop)  (h) Flat Top Pattern (Start & Stop) 
 

Figure 2. The Speed Wave Patterns of the First Vehicle in the Platoon  
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3. CAR-FOLLOWING PLATOON DATA SETS 

 

The car-following platoon data was recorded in a test track of Civil Engineering Research 

Institute of Hokkaido, Japan in October 2000.  The test track consisted of two 1.2 km straight 

sections with two 0.3 km semicircular curves.  Only the data on straight sections was used for 

eliminating geometry effects by curves.  Figure 1(a) shows a schematic layout of the test track.  

Location and speed of each vehicle were recorded at every 0.1 second interval throughout the 

experiment.  RTK GPS (Real-Time Kinematic GPS) was equipped on each of the ten test 

vehicles and the trajectories the vehicle were recorded.  The RTK GPS receivers used in this 

experiment had 10mm+2ppm position accuracy and less than 0.2 km/h speed accuracy at 

every 0.1 second interval.  Gurusinghe et al. (2002) examined the accuracy of the experiment 

data and confirmed these data sets are sufficiently accurate.   

Two different types of data have been recorded in the experiment; one for car-following 

conditions without stops and the other for the vehicle movements from start to stop in short 

distances.  The car-following data portion has been used for studies of several researchers 

such as Gurusinghe et al. (2002), Ranjitkar et al. (2003; 2004; 2005), and Tanaka et al. (2008) 

There were a total of ten drivers in the car-following platoon.  In this study, the ten 

drivers were identified as D1 through D10.  There were two types of driver arrangements in 

the experiment.  The Type-A arrangement was in the sequence of D1, D2, D3, D4, D5, D6, 

D7, D8, D9, and D10 from the first vehicle to the last vehicle in the platoon.  Type-B 

arrangement was in the sequence of D1, D8, D7, D6, D5, D4, D3, D2, D9, and D10.  In both 

driver arrangements, D1, D5, D9, and D10 had exactly the same positions.  The positions 

were identified as P1 through P10 from the first vehicle to the last vehicle in the platoon as 

seen in Figure 1(b). 

The driver of the first vehicle in the platoon, D1 on the vehicle location P1, initiated 

several speed patterns in the experiment.  In the car-following conditions without stops, the 

speed patterns were called Half Wave, One Wave, Two Waves, Three Waves, and Constant 

Speeds due to the speed trajectory of the leading vehicle.  Most of the car-following speed 

patterns were set to start of 40-50 km/h, have a speed wave pattern, and end of the same initial 

speed within the straight sections.  In the stop and go conditions, the speed patterns were 

called One Speed Peak, Two Speed Peaks, Three Speed Peaks, and Flat Top.  Most of the start  

& stop speed patterns were roughly designed to accelerate up to an expected optimum speed 

of 40-50 km/h, travel with speed fluctuations, and decelerate to complete stop.  Figures 2(a) 

through 2(d) schematically illustrates the speed patterns for the car-following speed patterns 

and Figures 2(e) through 2(h) illustrates the start & stop speed patterns.  There were a total of 

92 data sets consisting of 46 car-following data sets and 46 start & stop data sets used in this 

analysis.  Table 1 shows the number of data sets for each of the driver arrangements and the 

speed pattern combinations used in this analysis.   

 

 

4. METHODOLOGY 

 

First, the traffic flow models representing both macroscopic traffic stream conditions and 

microscopic car-following conditions were considered, and an appropriate model needed to be 

selected for the ten-vehicle platoon analysis.  The well-known GM model was selected due to 

the capability of representing both microscopic and macroscopic traffic flow conditions and 

its characteristics of representing several various models with different parameters.  As 

introduced previously, equations (2) and (3) represent the GM models in microscopic 

variables and in macroscopic variables, respectively. 
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Table 1. Speed Patterns and Number of Data Sets 

 

Experiment 

Type 
Speed Pattern 

Driver Arrangement 
Total 

Type A Type B 

Car-Following 

Half Wave 2 6 8 

One Wave 4 4 8 

Two Waves 2 5 7 

Three Waves 2 4 6 

Random 4 4 8 

Constant Speeds 7 2 9 

Start & Stop 

One Peak 13 12 25 

Two Peaks 9 4 13 

Three Peaks 2 0 2 

Flat Top 2 4 6 

Total 47 45 92 

 

 

The platoon analysis started with considering expanding the microscopic car-following 

model.  The GM car-following model is designed for the inter-vehicle relationship between a 

leader and a follower.  Assuming the platoon is more appropriately analyzed in steady-state 

speed-distance relationship rather than in second-by-second vehicular acceleration 

fluctuations responding to relative speed stimulus, reaction time T is eliminated in equation (2) 

and converted to speed-distance relationship equations.  The model parameters of l and m 

change the final equation shapes of speed-distance relationship.  Starting with the first car-

following model, equation (4) expresses the linear speed-distance relationships converted 

from equation (2), called Pipes’ and Forbes’ model, with l = 0 and m = 0.   

 

 1 0 0( ) ( ) ( )n n nx t x t x t C     (4) 

 

where 0  and Co are constant model parameters. 

For expanding this speed-distance model for the relationship among more than two 

vehicles in a platoon, individual vehicle variables need to be integrated.  For representing the 

variables consisting of more than two vehicles in a car-following platoon, equation (5) is 

established for the vehicles from the r
th

 vehicle to the s
th

 vehicle in a car-following platoon.  

We define this model in equation (5) as the linear platoon model in this paper. 
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where s ≥ r+1, 0rs  and Cors are constant model parameters.  The left side of the equation 

represents the difference in vehicle positions between the r
th

 vehicle to the s
th

 vehicle and the 

first term of the right side includes space-mean speed of vehicles between the r
th

 vehicle and 

the s
th

 vehicle.  When r equals to the first vehicle and s equals to the last vehicle of the platoon, 

equation (5) represents the relationship between mean-speed of the platoon and the platoon 
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length.  This equation can be applied from two vehicles to infinite number of vehicles in a car-

following platoon. 

Assuming the platoon length is long enough to represent macroscopic perspective, 

platoon length can be converted to density and equation (5) can be transferred to the equation 

with macroscopic traffic flow variables using V, space-mean speed, and K, density. 
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Then, replace the coefficients with macroscopic traffic flow parameters. 

 

 
1 1

o

j

V V
K K

  
  

  

 (7) 

 

where Vo is optimum flow speed and Kj is jam density.  Finally, flow rate, Q, can be 

computed using the general relationship among the three macroscopic variables, Q = KV. 
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Similarly, for the first non-linear GM car-following model, called the third GM model, 

equation (9) can be derived from equation (2) with l = 1 and m = 0.   
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where s ≥ r+1, 1  and C1 are constant model parameters.  Then, the equation (10) is derived 

for the speed-distance relationship of vehicles in a car-following platoon. 
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where 1rs  and C1rs are constant model parameters.  We define this model in equation (10) as 

the exponential platoon model.  This model represents the platoon length exponentially 

increases as the mean-speed increases in the platoon. 
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Then, replace the coefficients with macroscopic traffic flow parameters. 
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Table 2. R-Square Values of the Platoon Models Fit 

 

(a) Linear Platoon Model 

 

Linear Platoon 
Model 

Following Vehicle in the Model 

P2 P3 P4 P5 P6 P7 P8 P9 P10 

Le
ad

in
g 

V
eh

ic
le

 in
 t

h
e 

M
o

d
el

 

P1 0.643 0.748 0.782 0.832 0.865 0.876 0.879 0.889 0.890 

P2   0.673 0.743 0.814 0.854 0.868 0.872 0.886 0.887 

P3     0.665 0.779 0.841 0.863 0.869 0.886 0.886 

P4       0.664 0.794 0.833 0.849 0.872 0.876 

P5         0.686 0.816 0.840 0.866 0.874 

P6           0.687 0.771 0.823 0.840 

P7             0.706 0.807 0.837 

P8               0.723 0.809 

P9                 0.708 

 

(b) Exponential Platoon Model 

 

Exponential 
Platoon Model 

Following Vehicle in the Model 

P2 P3 P4 P5 P6 P7 P8 P9 P10 

Le
ad

in
g 

V
eh

ic
le

 in
 t

h
e 

M
o

d
el

 

P1 0.753 0.831 0.846 0.878 0.899 0.917 0.921 0.927 0.926 

P2   0.771 0.815 0.868 0.893 0.916 0.920 0.927 0.926 

P3     0.736 0.838 0.878 0.913 0.920 0.928 0.928 

P4       0.787 0.858 0.908 0.918 0.927 0.928 

P5         0.763 0.891 0.910 0.923 0.926 

P6           0.828 0.879 0.904 0.911 

P7             0.807 0.881 0.899 

P8               0.826 0.878 

P9                 0.787 

 

 

As seen in equation (12), Geenberg traffic stream model can be derived from the 

exponential platoon model as we expected.  In this study, several of macroscopic traffic 

stream models represented by different parameters in the generalized GM model will be used 

for the analysis.  A list and formula of the models used in this study are summarized in Table 

3.   

 

 

5. ANALYSIS RESULTS 

 

There were two kinds of driver arrangements and several speed patterns in the experiment as 

mentioned earlier.  In this study, all different speed pattern types were added together to 

establish the relationships between mean-speed and platoon length.  By adding all the separate 

experimental data together, the entire data for one vehicle became 80912 data points with 0.1 
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second intervals, which means 8091 seconds of trajectory data on each vehicle.  The entire 

data set covered mean-speed from 0 km/h to 87 km/h.  First, the differences between the two 

driver arrangements were reviewed and compared, however it was found that the difference 

by the arrangement is negligible in this case.  All the data sets were added together by vehicle 

positions in the platoon regardless of driver arrangements. 

 

 

Table 3. Regression Results in Macroscopic Traffic Stream Models 

 

Model Equation R-Square 
Max. Flow 

Rate (veh/hr) 

Jam Density 

(veh/km) 

Pipes/Forbes 0
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 0.922 1853 124 
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 0.933 1838 162 

Observed Data Sets 

Minimum 1636 135 

Average 2017 143 

Maximum 2467 155 

 

 

5.1 Relationship Establishment between Mean-Speed and Platoon Length using Platoon 

Models 

 

The relationships between mean-speed and platoon length were examined among all vehicles 

in the platoon.  Two vehicles were selected to obtain one set of relationship curves to 

determine the beginning and end of the platoon.  All of the combinations of two vehicle 

positions were examined in the platoon.  With 10 vehicles, there was a total of 45 two-vehicle 

combinations.  The two proposed platoon models shown in equations (5) and (10) were used 

for the analysis.  They are derived from Pipes’/Forbes’ linear model and GM’s third 

exponential model as explained.  The least square method was utilized to find the parameters 
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for the best model fit.  Tables 2(a) and 2(b) show the R-square values of the platoon models 

between the two vehicles in the platoon.  It is seen that R-square values are low the 

relationship is only between adjacent vehicles, however the R-square value increases as the 

number of vehicles increases in both models. 

Figure 3 summarizes the relationships between number of vehicles and R-square values 

in the analysis platoon in both models.  It is clearly seen in this figure that R-square values 

increase as the number of vehicles increases in the platoon analysis, however it is also seen 

that the increase in R-square values reduce when the additional number of vehicles increases.  

Based on the figure, the five-vehicle analysis platoon almost reaches the highest R-square 

value in the case of the exponential platoon model.  In this figure, generally the platoon model 

from the GM’s third exponential model fits better to the data sets than the linear platoon 

model based on R-square values. 

 

 

 
Figure 3. R-Square Values of Platoon Model Fit 

 

 

Figures 4(a) through 4(d) graphically explains the relationships between mean-speed 

and platoon length to three different positions from the leading vehicle in the platoon, P1.  It is 

seen that P2, the first follower behind the leading vehicle, has a large fluctuation of distance 

headway with the same speed and it tends to increase as the speed goes up as seen in Figure 

4(a).  The second figure, Figure 4(b), shows the mean-spread and platoon length relationship 

between P1 and P4, which includes three followers from the beginning to the middle position 

in the platoon.  Vertical scale is different compared to the left chart for P2, however it is seen 

that the ratio of fluctuations to the platoon length is smaller with the same speed compared to 

P2.  This implies that the fluctuation of average headway between P1 and P4 becomes smaller 

at the same mean-speed compared to the one between P1 and P2.  The higher R-square value 
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supports this phenomenon.  The trend continues to the vehicle position P7, which is further 

located behind in the platoon, as seen in Figure 4(c).  Then, finally, the trend continues to the 

last vehicle in the platoon, P10.  Figure 4(d) shows the relationship between mean-speed and 

the entire platoon length in the experiment, which includes all vehicles from P1 to P10.  

Narrower bands of the data spread can be seen in the vertical data range in the chart and 

correlation values indicated by R-square also increase compared to the ones seen in the 

previous three charts for P1-P2, P1-P4, and P1-P7.  Based on the results seen in Tables 2(a) 

and 2(b), which can be validated graphically with Figures 4(a) through 4(d), it is found that a 

platoon including the largest number of vehicles has the most stable relationship between 

mean-speed and the platoon length. 
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Figure 4. Platoon Models of Individual Vehicles with the Leading Vehicle P1 
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(a) Observed Data (Density vs Mean-Speed) (b) Calibrated Models (Density vs Mean-Speed) 
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(c) Observed Data(Mean-Speed vs Flow Rate) (d) Calibrated Models (Mean-Speed vs Flow 

Rate) 
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(e) Observed Data (Density v.s. Flow Rate) (f) Calibrated Models (Density vs Flow Rate) 

 

Figure 5. Observed Data Sets and Calibrated Macroscopic Traffic Stream Models 
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5.2 Regressions to Macroscopic Traffic Stream Models 

 

The next step for analyzing platoon models is investigating the capability of applying them to 

macroscopic traffic stream models.  In the previous section, the platoon models showed that 

the combination of P1 and P10 had the best correlation between mean-speed and platoon 

length among all the combinations of two vehicles in the car-following platoon.  Due to this 

fact, mean-speed of all vehicles and the entire platoon length from P1 to P10 were applied 

towards examining macroscopic variables generated from the entire platoon.  The platoon data 

plots created from the entire platoon lengths for macroscopic traffic stream models are shown 

in Figures 5(a), 5(c) and 5(e). 

Several macroscopic traffic stream models were selected to apply the platoon data sets.  

Table 3 shows a list of the models used for the regression analysis in this study.  Mainly the 

series of GM macroscopic models were examined.  The models selected are Pipes/Forbes 

model, Greenberg model, Greenshields model, Underwood model, Northwestern model, 

Pipes-Munjal model, and finally the generalized GM model.  The first two models, 

Pipes/Forbes model and Greenberg model, match the linear and the exponential platoon 

models examined in previous section.  The least square method was again used to find the 

parameters for the best fitting to the data sets.  Table 3 also presents the results of the 

regression to each model.  As the values in the table indicates, most of the models show very 

high correlations to the platoon data sets.  R-square values for most of the models show more 

than 0.92 except Pipes/Forbes model and Greenshields model.  Figures 5(b), 5(d), 5(f) show 

all the calibrated models plotted on the observed platoon data.  Table 3 also shows the 

maximum flow rates and jam densities.  The values can be compared between observed and 

estimated by the models in the table.  All models show similar maximum flow rate near 1850 

veh/h.  No models had the jam density within the observed data range between 135 and 155 

km/h, but somewhat all models estimated jam density close to those values between 120 and 

162 veh/km.   Two models with exponential function, Underwood model and Northwestern 

model, had a disadvantage of no jam density.  Considering the correlation values, estimated 

maximum flow rate, and jam density, we nominate Greenberg Model, Pipes-Munjal, and 

General GM models for good representing the platoon data sets in this study.  However, 

among these three macroscopic models, we conclude that the best fitting model to the platoon 

data sets is the generalized GM’s macroscopic model due to it’s highest correlation value and 

model flexibility by adjusting parameters.  It has been a long time since this model was 

developed, however our data fitting results still show the general GM model is the best for 

drawing one regime in the macroscopic traffic stream variables. 

 

 

6. CONCLUSION 

 

In this study, two platoon models were developed to explain the relationship between mean-

speed and platoon length in the dynamic car-following platoon.  The most important finding 

was that the correlations of the platoon models increased as the platoon size increased.  

However, the increase of the correlation by an additional vehicle gradually reduced as the 

platoon size increased.  The strongest correlation among any two vehicle combination was 

seen in the longest platoon model between the first vehicle and the last vehicle in the platoon 

in the experiments. 

The platoon data sets were also applied to several macroscopic traffic stream models.  It 

was found that many of macroscopic traffic stream models well fitted on the platoon data sets 
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without any significant problems as showing reasonable estimated values of the maximum 

flow rates and jam densities. 

Based on these findings, we conclude that the general GM’s traffic stream models can 

well represent the variable relationships in a car-following platoon as well as the macroscopic 

traffic stream aspects.  However, these relationships were only among the variables for steady 

flow conditions.  Further study will be necessary to investigate how dynamic movements of 

the platoon can be well represented in microscopic traffic flow level. 
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