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Abstract: Four car-following models with artificial neural network (ANN) structure were 

developed with various input variables in the car-following behavior. A four-layer ANN 

structure was set up and a genetic algorithm (GA) and back-propagation methodology were 

utilized for determining the synaptic weights in the models, however the models sometimes 

had a difficulty in learning such enormous number of raw data points. Therefore, a 

methodology of data point conversion was developed with, Kohonen Feature Map (KFM), a 

self-organization neural network model.  In order to evaluate the ANN models, the General 

Motors’ (GM) model was also calibrated.  This paper concluded that the ANN models were 

successfully developed with KFM data conversion without deteriorating the original data 

quality.  In comparing the results among the four ANN models, it was implied that the 

accelerations of the following vehicle and leading vehicle can also become key input variables 

for improving the modeling of car-following behavior. 

Keywords: Car-Following Model, Artificial Neural Networks (ANN), Back-propagation, 

Kohonen Feature Map (KFM), Genetic Algorithm (GA), Data Sampling 

1. INTRODUCTION

Various microscopic car-following models have been developed to represent vehicular 

movements in the microscopic level of traffic flow in the past half century.  The car-following 

models have generally been modeled based on experiments observing variables of two 

vehicles called a leading vehicle, LV, and a following vehicle, FV. It started with a very 

simple mathematical model, that utilized a linear relationship between spacing between a 

leader and a follower, and a desirable speed of the follower.  Since then, the car-following 

models have become increasingly complex, with extra input variables and specific predefined 

rules in newer proposed models. Developing such a complicated car-following model is 

normally time-consuming and sometimes there is difficulty in calibration with the predefined 

rules.  The models and rules are predetermined by the modelers, however they may not 

accurately represent human driving behavior as there may be some key factors missing from 

the natural driving behavior in the models.  In order to better present driving behavior, it may 

be more effective to have a car-following model learn the human driving behavior through the 

car-following traffic variables from the observed data sets. The artificial neural network 

(ANN) model has such a structure for building an input-output system throughout the learning 

process from training data sets. 

Mathematical models of ANN have been developed from the structure and functional 

aspects of biological neural networks.  ANNs are adaptive systems that change structures 

based on external or internal information that flows through the network during the learning 

phase.  Therefore, ANNs have been often used for non-linear statistical data modeling.  Car-

following behavior is a human behavior and a driver learns from experience utilizing the 
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external information surrounding the driving vehicle.  It is expected that the ANN structure 

has great potential to model car-following behavior.  There are some shortcomings of using 

ANNs and one of them is the long computation time during the training process due to its 

heavy repeating process in the data learning algorithms.  However, in the past several decades, 

the computer technologies have been significantly improved and computation time for 

processing complicated computer algorithms has significantly shortened. Thus, the 

computation time of heavy repeating processes for learning data sets in ANN has significantly 

reduced as the computer technology has improved.  Therefore, ANN model structure was 

applied for building car-following models in this paper.  Multiple ANN car-following models 

were developed with different input variables and they were compared each other for 

evaluating the importance of the model input variables among them.  The proposed ANN 

models were also compared to a well-known existing car-following model in order to evaluate 

how the ANN structures are valid and feasible to apply as car-following models in this study. 

 

 

2. BACKGROUND 

 

2.1 Car-Following Models 

 

Microscopic car-following models began with a simple linear relationship between driving 

speed and distance headway with the vehicle running in front of the subject vehicle introduced 

by Pipes (1953).  Forbes and Zagorsk (1958) introduced the same car-following model, but 

used speed and time headway instead of space headway.  After these speed-distance models, 

researchers at General Motors Company (GM) established a series of car-following models 

called stimulus-response system.  In this car-following system, stimulus is represented by 

relative speed between a leader and a follower and response is represented by acceleration of 

the follower as shown in equation (1).   

 

  1( ) ( ) ( )n n nx t T x t x t     (1) 

 

where, 

t : time, 

T : reaction time, 
( )nx t T   : acceleration of the n

th
 vehicle at time t+T, 

( )nx t   : speed of the n
th

 vehicle at time t, 

  : sensitivity factor 
 

GM researchers also developed generalized car-following models by considering that 

the sensitivity factor in equation (1) can be as simple as a constant value, but also can be a 

complicated function of headway and speed of the vehicles.  This generalized car-following 

equation is called the GM model shown as equation (2). 
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where, 
( )nx t   : position of the n

th
 vehicle at time t, 

 , l, m : model parameters 
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It is known that equation (2) can represent many of car-following models introduced in 

past.  For example, the equation becomes Pipes’ and Forbes’ models when l = 0 and m = 0.  In 

the case where l = 1 and m = 0, the equation becomes the GM’s third model, and it becomes 

the GM’s fourth model with l = 1 and m = 1.  This well-known GM’s car-following model is 

also famous for making its connection to the macroscopic traffic stream models. 

The GM model has been well-known as representing the stimulus-response system in 

car-following behavior.  Other than the GM models, there are many other existing car-

following models with various modeling aspects.  Bracksone and McDonald (1999) classified 

the existing car-following models into several groups; GM Model, Collision Avoidance 

Model, Linear Model, Psychophysical Action Point Model and Fuzzy Logic Based Model.  In 

addition to these model groups, several researchers recently started developing neural network 

driver models (Chong and Medina, 2011; Metthew and Ravishankar, 2012; Panwai and Dia, 

2007; Colombaroni and Fusco, 2011).  They are all modeled with representing unique and 

specific driving behavior aspects.  Although there are several candidates for model 

comparison, the GM model was selected for model comparison in this study due to its long 

history and name recognition. 

 

 

3. CAR-FOLLOWING DATA SETS 

 

The car-following data was recorded in a test track at the Civil Engineering Research Institute 

of Hokkaido, Japan in October 2000.  The test track consisted of two 1.2 km straight sections 

with two 0.3 km semicircular curves.  To eliminate any geometry effects from the curves, 

only the data on the straight sections were used.  The location and speed of each vehicle were 

recorded at 0.1 second intervals throughout the experiment.  RTK GPS (Real-Time Kinematic 

GPS) was equipped on each of the ten test vehicles and the trajectories of the vehicles were 

recorded.  Gurusinghe et al. (2002) examined the accuracy of the experimental data and 

confirmed these data sets are sufficiently accurate.   

Two different types of data were recorded in the experiment: one for car-following 

conditions without stops and the other for the vehicle movements from start to stop in short 

distances.  The car-following data portion has been used for the studies of several researchers 

such as Gurusinghe et al. (2002), Ranjitkar et al. (2003; 2004; 2005), and Tanaka et al. (2008) 

There were a total of ten drivers in the car-following platoon.  In this study, the ten 

drivers were identified as D01 through D10 from head to tail of the platoon.  The driver of the 

first vehicle in the platoon, D01, initiated several speed patterns in the experiment.  The data 

sets for D02 through D10 were used for fitting car-following models.  There were a total of 47 

data sets consisting of 21 car-following data sets and 26 start & stop data sets used in this 

analysis.  The car-following data sets were set to start at 40-50 km/h, have some speed 

fluctuations, and end at the same initial speed within the straight sections.  The start & stop 

speed data sets were designed to accelerate up to an expected optimum speed of 40-50 km/h 

from a stop condition, travel with speed fluctuations, and decelerate to complete stop.  The 

length of the data collection period was 4342.3 seconds with 43,423 data points for each of 

ten vehicles in these data sets.  The reaction time for each driver’s response had to be preset in 

training for use in calibrating the car-following models in this study.  The reaction times for 

the individual drivers were referred to the previous study by Ranjitkar et al. (2003).  The 

reaction time approximately ranged between 1.3 to 1.6 seconds among the drivers D02 

through D10. 
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4. METHODOLOGY 

 

As mentioned in the previous paragraph, the raw car-following data included more than forty-

two thousand data points for each vehicle.  In the back-propagation training process, the 

widely-spread, enormous data can sometimes cause overlearning and/or divergence problems.  

Therefore, data sampling and data conversion to fewer points were conducted for a smooth 

learning process during back-propagation training.  Assuming the data points are not 

fluctuated in a short time interval, simple data sampling was conducted at every 10 to 30, 

which corresponds to 1.0 to 3.0 second intervals.  Similarly to the other methodology to 

reduce the number of training data points, data conversion was performed through a self-

organization ANN model called Kohonen Feature Map (KFM). 

In this paper, two kinds of ANN models were utilized for the analysis.  One is a self-

organization ANN model and the other is a multilayer ANN model for back-propagation 

training process.  The first ANN model, KFM, was used for transferring the raw data points to 

fewer data points for smooth back-propagation data training in the multilayer ANN model.  

The multilayer ANN model was then used as the main frame of the proposed ANN car-

following models for representing human driving behaviors. 

Four ANN car-following models were developed with various input variables for this 

study.  Initial synaptic weights in the proposed ANN models were first calibrated with a GA 

model.  After the synaptic weight initialization by GA, the back-propagation process was 

performed for training the synaptic weights further by learning the converted data sets 

throughout KFM.  The numbers of input data variables varied from two to five depending on 

the ANN models. 

In order to compare the performance of the ANN car-following models, the GM’s car-

following model was calibrated to fit to the same data sets.  The GA model was again utilized 

for finding the best constants in calibrating the GM models.  The ANN and GM models were 

evaluated with the R
2
 value in order to measure how they fit to the raw data sets.  

 

 

4.1 Genetic Algorithm (GA) 

 

The Genetic Algorithm (GA) program was used for two purposes in this study: 1) to calibrate 

the initial weights of the ANN car-following models, and 2) to find the best fit coefficients of 

GM’s car-following model shown in equation (2).  The GA program used in this study was 

the Genecop III program proposed by Z. Michalewicz (1992).  It is characterized by the 

operation by floating-point number, the flexibility in dealing with constraints and boundaries, 

and the systematic applications of mutations and crossovers.  The GA’s objective function 

was set to minimize the average of the sum squared error between estimated and observed 

data values. 
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where, 

J(e) : objective function, 

yi,data : measured value for the output variable in ith input data, 

yi,est : estimated value for the output variable in ith input data, 

N  : number of data points 
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Figure 1. The Mutilayer ANN Car-Following Model Structures 
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Table 1. Input and Output Variables for the ANN and GM Car-Following Models 

 

 

# of Input and 

Output 

Variables 

Input Variable Output Variable 

ANN Model-I 
2 Inputs 

1 Output 

Relative Speed (t), 1( ) ( )n nx t x t   

Spacing (t), 1( ) ( )n n nx t x t L    

FV Acceleration (t+T), 

( )nx t T  

ANN Model-II 
3 Inputs 

1 Output 

Relative Speed (t), 1( ) ( )n nx t x t   

Spacing (t), 1( ) ( )n n nx t x t L    

FV Speed (t), ( )nx t  

FV Acceleration (t+T), 

( )nx t T  

ANN Model-III 
4 Inputs 

1 Output 

Relative Speed (t), 1( ) ( )n nx t x t   

Spacing (t), 1( ) ( )n n nx t x t L    

FV Speed (t), ( )nx t  

FV Acceleration (t), ( )nx t  

FV Acceleration (t+T), 

( )nx t T  

ANN Model-IV 
5 Inputs 

1 Output 

Relative Speed (t), 1( ) ( )n nx t x t   

Spacing (t), 1( ) ( )n n nx t x t L    

FV Speed (t), ( )nx t  

FV Acceleration (t), ( )nx t  

LV Acceleration (t), 1( )nx t  

FV Acceleration (t+T), 

( )nx t T  

GM Model 
3 Inputs 

1 Output 

Relative Speed (t), 1( ) ( )n nx t x t   

Headway (t), 1( ) ( )n nx t x t   

FV Speed (t+T), ( )nx t T  

FV Acceleration (t+T), 

( )nx t T  

 

Note: FV denotes a following vehicle (n
th

 vehicle), LV denotes a leading vehicle ((n-1)
th

 

vehicle), xn(t) is the position of the n
th

 vehicle at time t, T is a reaction time of the n
th

 

vehicle, and Ln is the vehicle length of the n
th

 vehicle. 

 

 

4.2 Multilayer Artificial Neural Network (ANN) Models 

 

The main structure of the ANN models was developed for training the car-following data sets 

with back-propagation methodology.  Figure 1 shows the structures of the multilayer ANN 

car-following models used in this study.  All of the multilayer ANN models consist of four 

layers: an input layer, two intermediate hidden layers, and an output layer.  Each layer has one 

or more neurons which are connected to the neurons on adjacent layers with some connection 

strengths called synaptic weights.  The normalized input variable, between 0 and 1, was 

entered into the input layer.  The input signals were transmitted in sequence from the input 

layer to the output layer while neural operations were repeated.  The output layer produces the 

normalized objective variable.  The forward signal process is completed with this computation 

sequence from the input layer to the output layer. 

After the forward signal process, the synaptic weights were adjusted so that the error 

between the output signals and the target signals was minimized.  The back-propagation 
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method (Wasserman, 1989) produces the adjustments of synaptic weights in each layer.  The 

synaptic weights are adjusted by the momentum method to smooth the adjustment and urge 

the convergence.  The forward and back-propagation processes were repeated until the error 

between the target and the output was reduced within a tolerance limit or until a preset 

number of iterations was reached. 

Four ANN models with different input variables were developed in this study.  They are 

identified as ANN Model-I, ANN Model-II, ANN Model-III and ANN Model-IV throughout 

this work.  The descriptions of the layer and node structure as well as the input and output 

variables for these ANN car-following models are listed in Table 1. 

 

 

4.3 Kohonen Feature Map (KFM): A Self-Organization Neural Network Model 

 

The KFM model is a two-layered neural network that can organize a topological map from a 

random starting point.  It has the ability to classify input patterns into several output patterns.  

Successful data conversions were reported in non-linear regression analysis by Nakatsuji et al. 

(1995).  Figure 2 depicts the basic network structure of a KFM model.  In this study, a two 

dimensional structure was used for the analysis.  It consists of two layers: an input layer and a 

competitive layer.  The interconnections (synaptic weights) are adjusted in a self-organizing 

manner without any target signals.  The self-organization process used by the KFM model is 

briefly explained in the following paragraphs.  An input pattern to the KFM is denoted here as 

 

  1 2, , ,k nE e e e e  (4) 

 

where, 

E : input vector 

ek : kth input variable in the input layer 

 

The observed car-following variables are adopted as the input signals, the input layer 

consists between three (n=3 for ANN Model-I case) and six neurons (n=6 for ANN Model-IV 

case).  The number of neurons in the competitive layer can be specified arbitrarily.  The 

weights from the input neurons to a single neuron in the competitive layer are denoted as 

 

 1 2, ,. , ,ij ij ij kij nijW w w w w     (5) 

 

where, 

Wij : synaptic weight vector for the neuron in ith row and jth column in the competitive 

layer, 

wkij : synaptic weight value between kth neuron in the input layer and the neuron in ith 

row and jth column in the competitive layer, 

n : number of input variables in the input layer 

 

The first step in the adjustment of synaptic weights is to find a winning neuron c in the 

competitive layer whose weight vector matches most closely to each input vector E.  The 

matching value is defined by the distance between vectors E and Wij: 

 

  
2

k kij

k

e w  (6) 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



 

 

 
 

 

Figure 2. Two Dimensional KFM Model Structure 

 

 

The neuron with the lowest matching value wins the competition.  After the winning 

neuron c is identified, weights are updated for all neurons that are in the neighborhood Nc of 

the winning neuron.  The adjustment is 

 

 
( ) ,
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k kij c
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e w if i j N
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otherwise
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
 (7) 

 

where, 

ΔWkij : synaptic weight adjustment between kth neuron in the input layer and the 

neuron in ith row and jth column in the competitive layer, 

β :  learning rate, 

c :  winning neuron in the competitive layer 

Nc :  neighborhood of the winning neuron in the competitive layer 

 

β is the learning rate, which is decreased over a span of many iterations.  This adjustment 

results in the winning neuron becoming more likely to win the competition when the same 

similar input pattern is presented subsequently.  In other words, the synaptic weight vector Wij 

consequently represents those input patterns that resemble each other.  This is called the 

integration of observed data.  More details can be found in the work by Dayhoff (1990). 

Figure 3 shows an example of the KFM network development used in this study.  Only 

two variables of relative speed and spacing were plotted on the figures for visualizing the 

developments as the percentage of competitive iteration increases.   Blue and green lines were 

plotted from the raw data of start & stop and car-following conditions, respectively, and the 

red points were the converted data points by KFM in the figures.  At the beginning, the 

converted points were close to each other in a small area in the middle of the data spread as 

seen in Figure 3(a).  Then the converted points start spreading out as the iteration percentage 
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increased as shown in Figures 3(b) and 3(c).  Finally, all the converted points were well 

distributed covering the raw data plot area as seen in Figure 3(d).  The converted points were 

not well spreading out during the first half of iteration, but they actively start spreading out in 

the second half of iteration.  This is because the converted points were pulled by many 

original data points with large winning neuron neighborhoods in the KFM structure and they 

tend to stay in the middle of majority of the data points rather than start spreading out.  

However, in the second half of the iteration, the winning neuron neighborhoods become 

smaller and smaller when the iteration percentage increases, then the converted points were 

pulled by fewer and fewer data points and started settling at the middle points for the fewer 

data points. 

 

 

 
(a) Iteration = 5 (5% Completed) (b) Iteration = 50 (50% Completed) 

 
(c) Iteration = 70 (70% Completed) (d) Iteration = 100 (100% Completed) 

 

 

Figure 3. Development of Converted Data Points by KFM 
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Figure 4. The Multilayer ANN Learning Curve by GA and Back-Propagation 

 

 

5. ANALYSIS RESULTS 

 

5.1 Determining Optimum Numbers of Sample Point by KFM and Simple Sampling 

Methodology (SSP) 

 

Since the back-propagation network sometimes causes a problem in the learning of numerous, 

widely-spread data points, the effort of reducing the number of training data points was first 

attempted with the data set for one driver.  At the beginning, only ANN Model-IV was trained 

with several different numbers of sample points to find out the optimum number of sampling 

points for the back-propagation process.  Two kinds of methodologies were used for reducing 

number of data points.  One methodology was to convert the raw data to fewer data points by 

KFM as introduced earlier.  The raw data points were over 42,000 for each driver.  The data 

points were converted by KFM down to 100, 225, 400, 625, and 900 points from the 

enormous number of raw data points.  The other sampling methodology was simply sampling 

at every certain number of raw data points in the continuous car-following data sets.   

Sampled data sets at every 10, 20, and 30 raw data points were examined.  Assuming the car-

following data points are continuous and that there are no sudden changes in a short time 

period, it was expected that the sampled points with this simple sampling methodology (SSP) 

can represent the raw data very closely if the time interval between sampling is short enough.  

The ANN Model-IV was trained through the back-propagation methodology with the synaptic 

weight initialization by GA.  An example of the learning curve encountered with these two 

methodologies is shown in Figure 4.  As seen in the figure, the average error percentage was 

significantly reduced by GA at the beginning, then the back-propagation process takes over 

and starts reducing the error further for fine tuning through many iterations.  In this combined 

error reduction methodology, often a bump occurs in the learning curve and the error 
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increases temporarily before it decreases when the back-propagation process takes over.  This 

is perhaps because the vector of reducing the error in the back-propagation process is not 

always the same as GA’s error reduction vector. 

 

 

Table 2. The R
2
 Values after Training ANN Model-IV with Different Sampling Data Sets 

(Only with Driver D02 Raw Data Set) 

 

Data 

Conversion 

Method 

Number 

of 

Samples 

for 

Training 

With Initialization of 

100 GA Iterations 

With Initialization of 

500 GA Iterations 

GA Only 

(R
2
 to 

Samples) 

GA & BP 

Training 

(R
2
 to 

Samples) 

GA & BP 

Training 

(R
2
 to Raw 

Data Sets) 

GA Only 

(R
2
 to 

Samples) 

GA & BP 

Training 

(R
2
 to 

Samples) 

GA & BP 

Training 

(R
2
 to Raw 

Data Sets) 

SSP-010 4281 0.767 0.845 0.845 0.811 0.842 0.842 

SSP-020 2140 0.734 0.848 0.837 0.805 0.863 0.853 

SSP-030 1427 0.770 0.862 0.851 0.790 0.861 0.843 

KFM-900 900 0.829 0.891 0.833 0.836 0.887 0.840 

KFM-625 625 0.823 0.913 0.855 0.836 0.910 0.852 

KFM-400 400 0.767 0.919 0.856 0.849 0.919 0.858 

KFM-225 225 0.851 0.935 0.843 0.895 0.945 0.850 

KFM-100 100 0.923 0.980 0.832 0.953 0.977 0.834 

 

 

 

Figure 5. The R
2
 Values after Training ANN Model-IV with Different Sampling Data Sets 

(Only with Driver D02 Raw Data Set) 
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Table 2 and Figure 5 summarize the R
2
 values to the sampled data points and also to all 

raw data points calculated from outputs of the trained ANN Model-IV with the sampled data.  

In the table, the number after KFM, KFM-#, denotes the number of converted data points by 

KFM.  The number after SSP, SSP-#, denotes the number of data intervals for simple 

sampling methodology.  In all cases, the R
2
 value increased with back-propagation training 

after GA initialization.  This implies that back-propagation is successfully tuning the model 

further beyond GA’s tuning limitation.  It is noted that the number of GA iterations did not 

affect the R
2
 values after the back-propagation training is completed.  It is also recognized that 

there is a relationship between the number of samples and the R
2
 value to the samples.  As the 

number of samples is reduced, the R
2
 value increases.  This implies how well the ANN model 

is trained to smaller data sets.  However, this phenomenon does not apply to the R
2
 value to 

the raw data sets.  Such a difference cannot be seen in the R
2
 values to the raw data sets 

among the different sample cases.   Among KFM data conversions, it is seen that KFM-400, 

400 converted points, had the optimum size of samples for having the best R
2
 values to the 

raw data point.  Therefore, it was assumed that the 400 point KFM represents the best KFM 

data conversion with these data sets and this KFM model was used for further analysis.  On 

the other hand, in the simple sampling methodology, SSP-020, sampling at every 20 data 

points, was arbitrarily chosen for the further analysis because no differences were seen in the 

R
2
 values among the three data simple sampling cases. 

 

 

Table 3. Parameter Values of the GM Models Calibrated by GA 

 

Driver ID 

Reaction 

Time 

T (sec) 

Model Parameters 
R

2
 

  l m 

D02 1.3 0.568 0.117 0.648 0.834 

D03 1.4 0.591 0.175 0.779 0.858 

D04 1.4 1.051 0.085 0.795 0.830 

D05 1.3 0.687 0.152 0.737 0.831 

D06 1.5 0.934 0.027 0.722 0.810 

D07 1.6 0.881 0.025 0.751 0.845 

D08 1.5 1.431 0.207 1.042 0.845 

D09 1.4 0.695 0.268 0.908 0.856 

D10 1.4 1.126 0.196 0.982 0.852 

 

 

5.2 The Four ANN Model Results 

 

Four ANN models were trained with the two kinds of sampled data sets through two different 

sampling methodologies, KFM-400 and SSP-020, as mentioned in the previous paragraph.  

The ANN models were made for all individual drivers, D02 through D10, except the very first 

driver, D01, in the car-following platoon.  GM models were also calibrated by GA.  Table 3 

summarizes the parameters and R
2
 value for each driver. 

Table 4 and Figure 6 summarize the R
2
 values of the ANN models for each driver using 

SSP-020.  As illustrated in Figure 1, the ANN Model-I has only two input variables while the 

ANN Model-IV has five input variables.  As seen in the table, the R
2
 values tend to increase 

when the number of input variables increases from the ANN Model-I to the ANN Model-IV.  
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The ANN Model-IV, which has the greatest number of the model input variables, had the 

highest R
2
 value among the ANN models for the same driver.  The last column in Figures 6 

and 7 shows the R
2
 values with the GM Model for comparison purposes.  Compared to the 

GM Models, the ANN Model-I, the ANN Model-II and the ANN Model-III have smaller R
2
 

values.  However, the ANN Model-IV has higher R
2
 values than GM Model for most of the 

drivers. 

 

 

Table 4. The R
2
 Values of the ANN Models for Individual Drivers with the Training Data by 

Simple Sampling (SSP-020, Sampled Every 20 Data Point) 

 

Driver ID 
ANN 

Model-I 

ANN 

Model-II 

ANN 

Model-III 

ANN 

Model-IV 
GM Model 

D02 0.714 0.718 0.782 0.837 0.834 

D03 0.749 0.742 0.822 0.878 0.858 

D04 0.702 0.677 0.744 0.830 0.830 

D05 0.730 0.612 0.766 0.880 0.831 

D06 0.672 0.684 0.785 0.883 0.810 

D07 0.715 0.714 0.678 0.862 0.845 

D08 0.745 0.698 0.784 0.887 0.845 

D09 0.740 0.726 0.770 0.846 0.856 

D10 0.734 0.632 0.796 0.841 0.852 

Average 0.714 0.689 0.770 0.860 0.840 

 

 

 

Figure 6. The R
2
 Values of the ANN Models for Individual Drivers with the Training Data by 

Simple Sampling (SSP-020, Sampled Every 20 Data Point) 
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Table 5. The R
2
 Values of the ANN Models for Individual Drivers with the Training Data by 

KFM (KFM-400, 400 Converted Sample Points) 

 

Driver ID 
ANN 

Model-I 

ANN 

Model-II 

ANN 

Model-III 

ANN 

Model-IV 
GM Model 

D02 0.632 0.720 0.750 0.858 0.834 

D03 0.684 0.731 0.795 0.876 0.858 

D04 0.599 0.718 0.765 0.836 0.830 

D05 0.696 0.703 0.780 0.876 0.831 

D06 0.651 0.684 0.788 0.885 0.810 

D07 0.681 0.643 0.718 0.867 0.845 

D08 0.724 0.695 0.782 0.882 0.845 

D09 0.710 0.723 0.772 0.835 0.856 

D10 0.669 0.700 0.774 0.855 0.852 

Average 0.672 0.702 0.769 0.863 0.840 

 

 

 

Figure 7. The R
2
 Values of the ANN Models for Individual Drivers with the Training Data by 

KFM (KFM-400, 400 Converted Sample Points) 

 

 

Finally, Table 5 and Figure 7 summarize the R
2
 values of the ANN models for each 

driver with the training data converted by KFM-400.  Similar to the R
2
 values in Table 4 and 

Figure 6, the ANN model has the same relationship between the R
2
 value and the number of 

input variables among the ANN models with KFM converted data sets.  Comparing the R
2
 

values of the ANN Model-III and Model-IV in Figure 8, almost no difference can be seen 

between the simply sampled data and KFM converted data.  This verifies that KFM data 

conversion was successful for sampling the data sets without data deterioration.  Figure 9 

shows the comparison of observed acceleration rate and the model outputs for one start & stop 
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data set.  It is seen that both the ANN Model-IV with KFM-400 well fit the observed data.  

However, the GM model slightly overestimates in the low range of acceleration and 

deceleration rates.  

 

 
 

Figure 8. Average R
2
 Values for the ANN Models 

 

 

 
 

Figure 9. Comparison of Observed Acceleration Rates and Estimated Model Outputs for One 

Start & Stop Data Set  
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6. CONCLUSION 

 

In this study, four ANN car-following models were developed and compared to the existing 

GM car-following model.  The data conversion methodology with KFM was successful for 

creating the training data sets for the back-propagation process.  The four ANN models were 

successfully trained using GA and back-propagation methodologies with the sampled data sets. 

ANN Model-IV, which has five input variables, showed the highest R
2
 values for all 

driver cases among the four ANN models.  At the same time, ANN Model-I and II had similar 

R
2
 values and showed the lowest R

2
 values among the four ANN models.  This phenomenon 

indicates that either ANN Model-II had difficulty in training from the data sets, or that the 

extra input variable from ANN Model-I to Model-II, FV speed at time t, has very little 

influence to the model output, FV acceleration at time t+T.  Although the R
2
 values did not 

increase from ANN Model-I to Model-II, they increased significantly from ANN Model-II to 

Model-III and from Model-III to Model-IV.  This implies that the extra input variables of FV 

acceleration at time t and LV acceleration at time t influence the car-following behavior 

significantly.  These input variables cannot be seen in many of the existing car-following 

models, however, there is a possibility that these variables are actually key inputs to improve 

the car-following model quality and accuracy.  This may be true in the real human driving 

behavior.  It is often seen that a driver determines the degree of acceleration not only with the 

relative speed, but also with the expectation of how the relative speed is going to change at the 

next moment.  The differentiation of relative speed is the difference between FV and LV 

acceleration rates. The acceleration rates of both FV and LV might be very important 

information for a driver in order to estimate the change of the relative speed in car-following 

conditions. 

The GM model was also calibrated to the same data sets with the GA technique and the 

results were compared to the ANN models.  The GM model showed very high R
2
 values and 

resulted in having better performance than the three of the ANN models: ANN Model-I, 

Model-II and Model-III.  Only one model, ANN Model-IV, had higher R
2
 values than the GM 

model. 

The results of this study illustrate the effectiveness of the ANN car-following model 

with GA initialization and KFM data conversion procedures.  We also provided validation of 

the GM car-following model in microscopic aspects with the enormous amount of observed 

car-following data. 
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