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Abstract: To serve elderly and disabled people, developing Demand Responsive Transit 
Service (DRTS) with flexible routes and changeable schedules is an important work.  The 
dial-a-ride systems are the one of practical applications of the DRTS.  Although many 
literatures develop an algorithm to improve the computing time to obtain acceptable solution 
under the minimum operational cost, the influence of the time window and the traffic 
condition for DARP is seldom to discuss.  The aim of this paper is to explore the influence 
of the time window and the traffic condition and apply branch-and-price approach to design 
vehicle routes and schedule.  The proposed algorithm is tested by a sub-network of 
Kaohsiung City, Taiwan.  In the numerical experiments, several scenarios with the different 
time window are conducted and evaluate experimental results by objective value, 
computational time, average pickup delay time and average delivery delay time. 
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1. INTRODUCTION

To meet transportation needs for the elderly and disabled people, developing Demand 
Responsive Transit Service (DRTS) with flexible routes and changeable schedules is an 
important work.  The dial-a-ride systems are the one of practical applications of the DRTS. 
Well-designed vehicle routes and schedule for dial-a-ride systems can improve transportation 
efficiency and save total travel costs.  In Taiwan, both Taipei and Kaohsiung Cities propose 
to build the Fu-Kang Bus for the elderly and disabled peoples.  To use the service of the 
Fu-Kang Bus, the elderly and disabled peoples could reserve the transportation service by 
telephone, internet and fax in advance.  How to design an appropriate vehicle routes and 
schedule to achieve the certain objective is a critical issue for dial-a-ride problems (DARP). 
The dial-a-ride transportation service and demand responsive transit services can be 
generalized as DARP.  The DARP is defined as follows: a fleet of vehicles with fixed 
capacities visit all demands with specific pickup and delivery requests.  The vehicle routes 
and schedule must satisfy the time window constraints.  All vehicles must satisfy the vehicle 
capacity constraints.  According to the requests of the customers, the dispatcher assigns 
vehicles to serve all demands and designs vehicle routes under the specific objective. 

For the study of the DARP, most literatures consider the minimum travel costs to construct 
solution framework or formulate mathematical model and then apply appropriate algorithm or 
heuristics to solve based on the scale and complexity of the problem.  Traditional exact 
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approach including simplex method and dynamic programming is capable of obtaining the 
optimal solution for DARP.  However, the computational cost will increase exponentially 
when the size of instances expands gradually.  In recent years, the new exact algorithm, 
branch-and-price approach has been successfully applied to handling more requests for DARP 
than traditional exact algorithm.  Although many literatures develop an algorithm to improve 
the computing time to obtain acceptable solution under the minimum operational cost, the 
influence of the time window and the traffic condition for DARP is seldom to discuss.  The 
aim of this paper is to explore the influence of the time window and the traffic condition and 
apply branch-and-price approach to design vehicle routes and schedule.  The proposed 
algorithm is tested by a sub-network of Kaohsiung City, Taiwan.  In the numerical 
experiments, several scenarios with the different time window are conducted and evaluate 
experimental results by objective value, computational time, average pickup delay time and 
average delivery delay time. 
 
This paper is organized as follows: Section 2 reviews the related studies of DARP.  The 
mathematical model for DARP is formulated in Section 3.  Section 4 presents the solution 
framework.  In Section 5, the numerical experiments are conducted in a Kaohsiung network.  
Conclusions and comments of this paper are discussed in Section 6. 

 
2. LITERATURE REVIEW 
 
Based on the characteristics of demand nodes for DARP, Psarafits (1980) and Cordeau and 
Laporte (2003), (2007) considered that the DARP can be categorized into two different kinds 
of problems: static DARP and dynamic DARP.  In the static DARP, all demands are known 
in advance.  According to the information of the given demands, the dispatcher could design 
appropriate routes and schedules to serve customers under the specific objective function.  In 
contrast with the static DARP, the dynamic DARP only knew partial information of the 
demands and the real-time demands might reveal during the vehicle routing.  The dispatcher 
must redesign the vehicle routes and service sequences to fulfill the real-time demands.  
Cordeau and Laporte (2003), (2007) surveyed several academic studies for DARP and 
classified DARP according to the number of vehicles and the characteristics of the demands.   
In terms of the number of vehicles, the DARP can be classified into the single-vehicle DARP 
and multi-vehicle DARP.  In terms of the characteristics of the demands, the DARP can be 
classified into the static DARP and the dynamic DARP. 
 
2.1 Exact Algorithm 
 
Psarafits (1980) applied dynamic programing to solve single-vehicle DARP with static and 
dynamic requests.  The objective function was to minimize the weighted sum of route 
completion time and customer dissatisfaction which incorporated customer`s waiting time and 
ride time.  The results of the numerical experiments revealed that the dynamic programming 
only can solve small instances with 9 requests.  Dumas et al. (1991) utilized column 
generation approach to deal with multi-vehicle DARP and decomposed the problem into a 
master problem (set partitioning problem) and a subproblem (constrained shortest path 
problem).  The numerical experiments showed that the proposed algorithm was capable of 
handling the randomly generated instances up to 55 requests.  Cordeau (2006) formulated 
the three-index DARP formulation and built the branch-and-cut algorithm to solve DARP.  
The numerical experiments were able to solve the size of problems with 48 requests.  Ropke 
et al. (2007) later applied same approach to explore DARP.  In this paper, the authors 
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constructed the two-index DARP formulation and compared the difference between the 
two-index DARP formulation and the three-index DARP formulation.  Based on the 
experimental results, the proposed algorithm was able to solve the size of instances with up to 
96 requests.  Ropke and Cordeau (2009) devised the branch and cut and price algorithm to 
deal with the pickup and delivery problems under the minimum total routing costs.  In the 
research framework, the author applied three different kinds of heuristics to solve the 
subproblem: construction algorithm, large neighborhood search and truncated label-setting 
algorithm.  The proposed algorithm was tested by several sizes of instances (30≤n≤500).  
Cortes et al. (2010) applied the branch-and-cut method and considered the Benders 
decomposition for pickup and delivery problems.  The proposed algorithm was tested by 
several random instances with up to 6 requests.  Hu and Chang (2011) formulated the 
time-dependent DARP under the minimum total travel time.  The mathematical formulation 
was solved by the mathematical programming software, CPELX.  The time-dependent travel 
time data were generated by the traffic simulation software, DynaTAIWAN.  The instances 
were generated randomly in a Kaohsiung network.  The experimental results revealed that 
the range of the time window obviously affects the computational time and objective value. 
 
2.2 Heuristic Approach 
 
Psarafits (1983) devised an O(N2) heuristic algorithm to solve single DARP.  In the research 
framework, the author applied the minimum spanning tree to generate the initial feasible 
solution and then took advantage of the node exchanges to improve current solution.  The 
experimental results showed that the proposed algorithm was capable of coping with size of 
instances (n=50).  Li and Lim (2001) proposed a tabu-embedded simulated annealing 
algorithm for the pickup and delivery problem with time windows under the minimum the 
number of vehicles, total travel distances, total schedule time and total waiting time.  The 
experimental results revealed that the proposed algorithm can handle the size of instances 
with 100 requests.  Fu (2002) took the time-varying and stochastic congestion into account 
to build heuristic approach for DARP.  In the numerical experiments, the proposed heuristic 
approach tested with up to 2800 requests.  Diana and Dessouky (2004) presented a new 
regret insertion heuristic for large-scale DARP under the minimum the total travel distance, 
the excess ride time for all customers and total idle time in the schedule.  The numerical 
experiments were conducted in the Los Angeles city.  Based on the numerical experiments, 
the results showed that the new regret insertion heuristic is capable of solving large size of 
instances with up to 1000 requests.  Fabri and Recht (2006) built an algorithm to cope with 
the dynamic pickup and delivery vehicle routing problem with time windows.  The 
computational experiments revealed that the proposed algorithm is capable of solving the 
large size of instances with up to 1000 requests.  Wong and Bell (2006) proposed the 
modified insertion heuristic to solve static DARP under the minimum total service costs, 
inconvenience of passengers and the travel costs for taking a taxi for the unserved requests.  
The computational results revealed that the modified insertion heuristic outperforms the 
classic parallel insertion heuristic.  Ropke and Pisinger (2006) built an adaptive large 
neighborhood search heuristic (LNS) for the pickup and delivery problem with time window.  
The proposed heuristic was tested by several sizes of instances: 100, 200, 400, 600, 800 and 
1000 requests.  Xiang et al. (2006) proposed a fast heuristic to deal with a large-scale DARP 
under the minimum fixed costs, travel costs, driver costs, waiting costs and service costs.  
The results showed that the proposed heuristic is capable of handling large size of instances 
with up to 1000 requests.  Lois et al. (2007) developed a very large scale neighborhood 
heuristic algorithm to solve multi-vehicle DARP.  The proposed heuristic was tested with up 
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to 28 requests.  Kim and Haghani (2011) devised three different kinds of heuristic algorithm: 
sequential insertion heuristic, parallel insertion heuristic and clustering first-routing second 
heuristic.  The computational results showed that sequential insertion heuristic obtain the 
lower objective value with short computational time than the others heuristics. 
 
2.3 Meta-heuristic Approach 
 
Cordeau and Laporte (2003) utilized tabu search heuristic to cope with multi-vehicle DARP.  
The computational experiments indicated that the tabu search heuristic is capable of solving 
the randomly generated instances with 24 to 144 requests.  Jørgensen et al. (2007) took 
advantage of the genetic algorithm to handle multi-vehicle DARP under the minimum total 
transportation costs and the inconvenience of customers.  The proposed algorithm was tested 
by large sizes of instances (n=144).  Cortes et al. (2009) introduced the particle swarm 
optimization (PSO) to deal with the dynamic pickup and delivery problem.  D`Souza et al. 
(2012) compared four different kinds of approaches including Simulated Annealing (SA), 
Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Artificial Immune System 
(AIS) for DARP.  The computational results revealed that PSO has worst quality of solutions 
and SA tends to search local optimal solution.  AIS and GA were able to solve effectively 
and obtain better quality of solutions.   
 
According to the previous studies, the exact algorithm, the heuristic-based algorithm and the 
meta-heuristic algorithm are capable of solving DARP.  The exact algorithm can search the 
optimal solution but the large the size of instances might result in high computational costs.  
In contrast with the exact algorithm, the heuristic-based algorithm and the meta-heuristic 
algorithm are capable of dealing with large size of instances with acceptable computational 
costs.  However, the heuristic-based algorithm and the meta-heuristic algorithm are difficult 
to obtain optimal solution and almost can only search second best solution.    
 
3. PROBLEM STATEMENT AND FORMULATION 
 
Consider a directed graph ( )ANG ,= , which include the set of nodes N and the set of arcsA .  

The set of nodes { } { }( )120 +∪∪∪= nDPN  are divided into four different kinds of node: 

source node, sink node, pickup node and delivery node.  The notation “{ }nP ,...,1= ” 

represents the set of pickup nodes and the notation “{ }nnD 2,...,1+= ” represents the set of 

delivery nodes.  In this research, the depot node is decomposed into source node { }0  and 

sink node{ }12 +n .  The source node only has outgoing arcs and the sink node only has 

incoming arcs.  Each request i  corresponds to a pair of nodes ( )ini +,  with pickup node 

and delivery node.  The notation iq  is defined as the load at nodei .  The load at node i  

is 0120 == +nqq  and Piqq ini ∈∀−= + , .  Each node i  has the time window constraint 

[ ]ii le ,  and the service timeis , the desired pickup/delivery time (DPT/DDT), directed ride 

time (DRT) and the maximum ride time limitation (MRT).  iDRT  is the travel cost between 

pickup node i  and corresponding delivery node in + .  According to the desired service 
time, the customers can be classified in to DPT-specified customers and DDT-specified 
customers.  The figure of DPT-specified customers is shown in Figure 1 (a) and the figure of 
DDT-specified customers is shown in Figure 1(b).   
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(a) 

 
(b) 

 Figure 1. DPT-specified customers and DDT-specified customers (Jaw et al., 1986) 
 
In order to consider the fluctuation of the travel time of link, this research adopts the concept 
of the “step function” (Malandraki and Daskin, 1992) to reflect the variation of the travel time 
over the time of a day.  The step function decomposes the continuous travel time function 
into several discrete travel time functions.  Each discrete travel time function corresponds to 
the specific time interval. 
 
The time-dependent DARP with time windows can be formulated as the following mixed 
integer program: 
 
Minimize  
 ∑∑∑∑

∈ ∈ ∈ ∈Ni Nj Mm Vv

m
vji

m
ji xc ,,,   (1) 

tosubject  

 1,, =∑∑∑
∈ ∈ ∈Nj Mm Vv

m
vjix  ( )Pi ∈ , (2) 

 1,,0 =∑∑
∈ ∈Pi Mm

m
vix  ( )Vv ∈ , (3) 

 1,12, =∑∑
∈ ∈

+
Dj Mm

m
vnjx  ( )Vv ∈ , (4) 

 0,,1,, =−∑∑∑∑
∈ ∈

+
∈ ∈ Nj Mm

m
vjn

Nj Mm

m
vji xx  ( )VvPi ∈∈  , , (5) 

 ∑∑∑∑
∈ ∈∈ ∈

=−
Nj Mm

m
vji

Nj Mm

m
vji xx 0,,,,  ( )VvDPi ∈∪∈  , , (6) 

 ( )v
mji

m
jiiij xBcStt ,,, 1−−++≥  ( )VvMmNjNi ∈∈∈∈ ,,, , (7) 

 0,,
1

, ≥− − m
vji

m
jii xTt  ( )VvMmNjNi ∈∈∈∈ ,,, , (8) 

 BTBxt m
ji

m
vjii +≤+ ,,,  ( )VvMmNjNi ∈∈∈∈ ,,, , (9) 

 iii lte ≤≤  ( )VvNi ∈∈ , , (10) 
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 iiini MRTttDRT ≤−≤ +  ( )Pi ∈ , (11) 

 






 −−+≥ ∑
∈Mm

m
vjiiij xBqww ,,1  ( )VvNjNi ∈∈∈ ,, , (12) 

 vi Qw ≤  ( )VvDPi ∈∪∈ , , (13) 

 { }1,0,, ∈v
mjix  , (14) 

 Mm ∈  , (15) 
 Vv ∈  , (16) 
 0≥it  , (17) 

 0≥iw  , (18) 

 { } { }{ }DPnN ∪∪+∪∈ 120   (19) 
 

Table 1. The notations of the time-dependent DARP formulation 

Notation Contents 
N  Node set ( n = 0, 2n+1:Depot; n=1,…,n: Pick-up nodes;  n=n+1,…,2n: Delivery 

nodes ), 
P  Pick-up nodes, P={1,…,n}, 
D  Delivery nodes, D={n+1,…,2n}, 
V  Vehicle set, 

m  Number of time interval, 
B  A large number, 
m

jic ,  Travel time from node i to node j at the time interval m, 

iS  The service time at node i, 

vQ  The capacity of vehicle v, 

iq  The load at node i, 

m
jiT ,  Upper bound for time interval m for link(i, j), 

ie  Earliest time that the vehicle can arrive at node i, 

il  Latest time that the vehicle can arrive at node i, 

it  The time starts service at node i, 

iw  The load of vehicle upon leaving node i, 

iDPT  Desired pickup time at node i ( )Pi ∈ , 

iDDT  Desired delivery time at node i ( )Di ∈ , 

iDRT  Direct ride time ( )iinii SttDRT −−= + , 

iMRT  Maximum ride time, 

m
vjix ,,  

If any vehicle v travels from node i to node j during the interval m, the variable is 
equal to 1. Otherwise is equal to 0. 

 
The objective function (1) is to minimize the total travel time.  Constraints (2) ensure that 
each demand must be served precisely once and each demand is only allowed to be visited by 
one vehicle.  Constraints (3) and (4) ensure that all vehicle shave to start from the depot and 
return to the depot.  Constraints (5) are precedence constraints.  Precedence constraints 
mean that each customer must pick up first and then delivery in the same vehicle.  
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Constraints (6) are the flow conservation equations.  Constraints (7) calculate the departure 
time to node j.  Constraints (8) and (9) are the temporal constraints.  If the vehicle travels 
from demand i to demand j during time interval m, the departure time of the vehicle from 
node i is between upper bound for time interval m-1 and upper bound for time interval m.  
Constraints (10) impose the time windows restrictions.  Constraints (11) ensure that the ride 
time of each customer i must be between directed ride time and maximum ride time.  
Constraints (12) and (13) impose the capacity constraints.  Constraints (12) are subtour 
elimination constraints (Parragh et al., 2008).  Constraints (13) ensure that all vehicles not 
exceed the vehicle capacity limitation.   
 
Based on time-dependent DARP formulation, the time-dependent DARP formulation can be 
reformulated using path flow instead of link flows as a set partitioning problem.  The 
Dantzig-Wolfe decomposition technique is applied to decompose time-dependent DARP 
formulation into a master problem (set portioning problem) and a subproblem (constrained 
shortest path problem).  The detailed formulation and discussion for a master problem and a 
subproblem are stated as follows: 
 
Minimize  
 ∑

∈Rr
rr yc   (20) 

  tosubject  

 ∑
∈

=
Rr

rir ya 1 ( )Pi ∈ , (21) 

 { }1,0∈ry  ( )Rr ∈ , (22) 
 

Table 2. The notations of a master problem 

Variables Contents 
R  The set of all feasible routes satisfying constraints (2)~(19), 

rc  The cost of the route r, 

ijc  The cost of the link (i, j). 

ira  The number of times node is visited by route r ( )Pi ∈ , 

ry  
If the route r is used in the solution, the variable is equal to 1.  
Otherwise is equal to 0. 

iπ  The dual variables associated with the set partitioning problem 
constraints (20). 

 
The objective function (20) is to minimize total cost of the selected route.  Constraints (21) 
ensure that each request is visited by one vehicle.  In this paper, the mathematical model 
defined by constraints (20) to (22) refers to as master problem.  To solve the set partitioning 
formulation easily, the constraints (22) can be relaxed to constraints (23).   
 
 0≥ry  ( )Rr ∈ , (23) 
 
In practice, the feasible routes are difficult to enumerate when the instance is a large scale 
problem.  In this paper, the column generation algorithm is proposed to solve the master 
problem.  The important concept of the column generation is never to enumerate all possible 
feasible routes for the formulation.  Each column generate by a subproblem which is refer to 
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as a constrained shortest path problem.  The subproblem is defined as follows: 
 
Minimize  
 ( )∑

∈
−

Nji
ijiij xc

,

π   (24) 

Subject to constraints (2)~(19). 
 
4. SOLUTION ALGORITHM 
 
The process of the solution algorithm is depicted in Figure 2.  The details of each step are 
described as follows: 
 
1. Input Data: Three principal input data are necessary including time-dependent travel time 

matrices, vehicle data and demand data.  In this paper, the traffic simulation software, 
DynaTAIWAN (Hu, et al., 2007) is applied to generate the time-dependent travel time 
matrices according to the network geometric data and OD demand data. 

2. DARP Formulation: Based on the necessary input data, the time-dependent DARP with 
time window is formulated. 

3. Decomposition: The Dantzig-Wolfe decomposition is applied to decompose 
time-dependent DARP with time window into master problem (set portioning problem) 
and subproblem (constrained shortest path problem). 

4. Column Generation: In the process of the column generation approach, the first is to 
generate initial feasible solution.  In this paper, the initial feasible solution is to assign 
vehicles to visit customers.  Each vehicle only serves one customers.  According to the 
initial feasible solution, the formulation of the master problem is constructed and obtains 
multipliers (dual variables) to feed into subproblem.  Based on the multipliers, the 
subproblem takes advantage of dynamic programming approach to find the optimal 
column with the minimum reduced cost.  If the reduced cost of the optimal column is 
less than 0, this column will feed into master problem and re-optimize the master 
problem to generate new multipliers.  Otherwise, the solution process will go next step. 

5. Branch and bound: If the final solution is not integer solution, the branch and bound is 
used to ensure that final result is integer. 

6. Output: After the solution process terminated, the vehicle routes and service sequences 
are obtained. 
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Figure 2. Solution Algorithm 

 
5. NUMERICAL EXPERIMENTS 
 
Numerical experiments are conducted on a sub-network of Kaohsiung City, Taiwan (see in 
Figure 3).  This network includes 132 nodes and 363 links.  The experimental parameters 
are specified as follows: the maximum simulation time is 600 minutes; the warm-up time is 
20 minutes; the instance in the numerical experiments includes 2 depot nodes (source node 
and sink node), 10 pickup nodes and 10 delivery nodes; the number of time intervals is 7 
(m=7) and each time interval has same length of time (5 min).  Each vehicle can 
accommodate 4 persons.  Each customer has one pickup node, corresponding delivery node, 
time window constant and maximum ride time limitation.  In the experimental instances, all 
customers are DPT-specified customers (see in Figure 1).  The expected pickup service time 
is equal to earliest pickup time (EPT) and the expected delivery time service time is equal to 
earliest delivery time (EDT).  The expected pickup service time of each customer is 
randomly generated.  During the vehicle routing, if the actual vehicle arrival time is less than 
earliest pickup time, the vehicle can wait 5 minutes at the pickup node until the earliest 
pickup time.  The maximum ride time is the function of the directed ride.  The detail of this 
function is shown as follow: 
 
 ii DRTbaMRT ⋅+=   (25) 
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In the numerical experiments, the coefficient a and b of the function (25) are set 10 and 2 
respectively. 
 

 
Figure 3. A sub-network of Kaohsiung City, Taiwan 

 
The numerical experiments consider two main experimental factors including time window 
and traffic conditions.  In the parameter setting of the time window, the length of the time 
window including 5, 10, 15, 20, 25, 30 (min) are considered.  Three different kinds of traffic 
conditions are considered incorporating light traffic condition, medium traffic condition and 
heavy traffic condition.  The basic results of traffic simulation are shown is table 3.  In the 
experiments, the scenario “H_10” means that the experiment is in the heavy traffic condition 
and the length of time window is 10. 
 

Table 3. Basic results of traffic simulation 

Scenario Number of 
Vehicle 

Number of 
Motorcycle 

Average  
Travel Time(min) 

Average  
Stopped Time(min) 

Light 
Traffic 

20760 12693 8.72 3.46 

Medium 
Traffic 

43456 31859 20.24 12.22 

Heavy 
Traffic 

64227 44561 47.60 29.46 

 
In the numerical experiments, average pickup delay time and average delivery delay time are 
used to evaluate the customer satisfaction.  The definitions of the pickup delay time and 
delivery delay time are specified as follows: 
 

 
( )

customersofnumberThe

timepickupExpectedtimepickupActual
timedelaypickupAverage Pi

   

    
    
∑
∈

−
=  (26) 
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( )

customersofnumberThe

timedeliveryExpectedtimedeliveryActual
timedelaydeliveryAverage Pi

   

    
    
∑
∈

−
= (27) 

 
The details of the vehicle routes and the travel time for each vehicle under different traffic 
scenarios are listed in Table 4, Table5 and Table 6.  The objective value, computational time 
(CPU time), average pickup delay time, average delivery delay time, number of vehicles and 
average travel time in different traffic scenarios are summarized in Table 7.   
 

Table 4. The vehicle routes and travel time under the light traffic condition 

Scenario Vehicle ID (Route) Travel Time (min) 
 
 

L_5 

1(0, 3, 1, 13, 11, 21) 44.68 
2(0, 10, 2, 20, 12, 21) 44.76 
3(0, 5, 4, 15, 14, 21) 42.64 
4(0, 6, 7, 16, 17, 21) 43.30 
5(0, 8, 18, 9, 19, 21) 40.67 

 
 

L_10 

1(0, 5, 15, 21) 26.43 
2(0, 6, 16, 21) 19.06 
3(0, 7, 9, 19, 17, 21) 40.57 
4(0, 8, 3, 1, 18, 13, 11, 21) 57.26 
5(0, 10, 2, 4, 14, 20, 12, 21) 59.41 

 
L_15 

1(0, 10, 3, 1, 2, 13, 20, 12, 11, 21) 72.66 
2(0, 6, 7, 16, 9, 19, 17, 21) 53.71 
3(0, 8, 18, 5, 4, 15, 14, 21) 56.53 

 
L_20 

1(0, 10, 1, 3, 2, 13, 12, 20, 11, 21) 69.81 
2(0, 6, 7, 16, 9, 19, 17, 21) 53.71 
3(0, 8, 18, 5, 4, 15, 14, 21) 56.53 

 
L_25 

1(0, 5, 15, 21) 26.43 
2(0, 6, 16, 21) 19.06 
3(0, 10, 1, 3, 2, 13, 11, 20, 12, 21) 69.79 
4(0, 8, 7, 18, 4, 9, 19, 17, 14, 21) 71.56 

 
L_30 

1(0, 3, 13, 21) 29.00 
2(0, 6, 16, 21) 19.06 
3(0, 8, 18, 10, 4, 1, 2, 12, 20, 11, 14, 21) 82.32 
4(0, 7, 5, 9, 19, 17, 15, 21) 56.20 

 
 
 

Table 5. The vehicle routes and travel time under the medium traffic condition 

Scenario Vehicle ID (Route) Travel Time (min) 
 
 

M_5 

1(0, 3, 1, 13, 11, 21) 49.13 
2(0, 10, 2, 12, 20, 21) 47.17 
3(0, 6, 7, 16, 17, 21) 46.15 
4(0, 5, 4, 15, 14, 21) 45.99 
5(0, 8, 18, 9, 19, 21) 45.39 

 
 

M_10 

1(0, 6, 16, 21) 20.30 
2(0, 3, 1, 2, 13, 12, 11, 21) 61.41 
3(0, 7, 9, 19, 17, 21) 42.73 
4(0, 10, 5, 15, 20, 21) 50.44 
5(0, 8, 4, 18, 14, 21) 42.42 
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M_15 

1(0, 5, 15, 21) 28.71 
2(0, 10, 1, 2, 12, 20, 11, 21) 60.15 
3(0, 8, 3, 4, 18, 13, 14, 21) 58.74 
4(0, 6, 7, 16, 9, 19, 17, 21) 56.56 

 
M_20 

1(0, 10, 1, 3, 2, 13, 20, 12, 11, 21) 72.20 
2(0, 6, 7, 16, 9, 19, 17, 21) 56.56 
3(0, 8, 18, 5, 4, 15, 14, 21) 62.29 

 
M_25 

1(0, 5, 15, 21) 28.71 
2(0, 6, 16, 21) 20.30 
3(0, 10, 1, 3, 2, 13, 12, 20, 11, 21) 71.64 
4(0, 8, 7, 18, 9, 4, 19, 17, 14, 21) 76.98 

 
M_30 

1(0, 6, 16, 21) 20.30 
2(0, 9, 19, 21) 28.46 
3(0, 10, 1, 3, 2, 13, 12, 20, 11, 21) 71.64 
4(0, 8, 7, 18, 5, 4, 17, 15, 14, 21) 79.56 

 
Table 6. The vehicle routes and travel time under the heavy traffic condition 

Scenario Vehicle ID (Route) Travel Time (min) 
 
 

H_5 

1(0, 10, 1, 20, 11, 21) 52.21 
2(0, 3, 2, 13, 12, 21) 48.06 
3(0, 5, 4, 15, 14, 21) 51.05 
4(0, 6, 7, 16, 17, 21) 48.70 
5(0, 8, 18, 9, 19, 21) 48.07 

 
 

H_10 

1(0, 6, 16, 21) 21.79 
2(0, 3, 1, 2, 13, 12, 11, 21) 62.51 
3(0, 7, 9, 19, 17, 21) 45.24 
4(0, 10, 5, 15, 20, 21) 54.48 
5(0, 8, 4, 18, 14, 21) 44.47 

 
H_15 

1(0, 5, 15, 21) 32.24 
2(0, 3, 1, 2, 13, 12, 11, 21) 62.51 
3(0, 6, 7, 16, 9, 19, 17, 21) 59.08 
4(0, 8, 10, 4, 18, 20, 14, 21) 66.37 

 
H_20 

1(0, 10, 1, 3, 2, 13, 20, 12, 11, 21) 74.45 
2(0, 8, 18, 5, 4, 15, 14, 21) 67.24 
3(0, 6, 7, 16, 9, 19, 17, 21) 59.08 

 
H_25 

1(0, 3, 4, 1, 2, 13, 12, 11, 14, 21) 77.37 
2(0, 6, 7, 16, 9, 19, 17, 21) 59.08 
3(0, 10, 5, 8, 15, 18, 20, 21) 70.08 

 
H_30 

1(0, 5, 15, 21) 32.24 
2(0, 8, 18, 21) 26.26 
3(0, 10, 1, 3, 2, 13, 11, 20, 12, 21) 73.87 
4(0, 6, 7, 16, 9, 4, 19, 17, 14, 21) 76.64 

 
Table 7. The results under the different traffic conditions 

Scenario Objective 
(min) 

CPU 
Time 
(sec) 

Average 
Pickup Delay 
Time (min) 

Average 
Delivery 

Delay Time 
(min) 

Number 
of 

vehicles 

Average 
travel time 

(min) 

L_5 216.05 0.73 1.34 9.80 5 43.21 
L_10 202.73 1.90 2.07 17.06 5 40.55 
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L_15 182.90 9.20 5.60 22.77 3 60.97 
L_20 180.05 31.25 6.27 23.06 3 60.02 
L_25 186.84 110.71 6.64 24.92 4 46.71 
L_30 186.58 430.52 9.48 25.96 4 46.65 
M_5 233.83 0.76 1.29 12.26 5 46.77 
M_10 217.30 1.28 2.99 15.39 5 43.46 
M_15 204.16 4.71 3.64 20.78 4 51.04 
M_20 191.05 17.30 7.02 24.80 3 63.68 
M_25 197.63 45.62 7.08 26.00 4 49.41 
M_30 199.96 176.77 8.15 27.58 4 49.99 
H_5 248.09 0.61 1.62 13.58 5 49.62 
H_10 228.49 1.17 3.25 16.35 5 45.70 
H_15 220.20 3.84 4.61 22.54 4 55.05 
H_20 200.77 14.30 7.57 25.93 3 66.92 
H_25 206.53 28.05 6.44 26.82 3 68.84 
H_30 209.01 97.84 7.41 26.57 4 52.25 

 
The relationship between the objective value and the length of the time window is shown in 
Figure 4.  Basically, the experimental results have the same patterns in the three different 
traffic scenarios.  The results indicate that the objective value increases as the length of the 
time window reduces.  One of the reasons might be that the tight time window constraints 
will reduce the region of the feasible solutions.  In additional, the objective value in the 
heavy traffic scenario is higher than other traffic scenarios. 
 

 
Figure 4. The relationship between the objective value and time window 

 
The relationship between the computational time and the length of the time window is 
depicted in Figure 5.  The results reveal that the length of the time window dominates the 
computational time.  When the time window constraints loosen, the computational time will 
increase exponentially.   
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Figure 5. The relationship between the computational time and time window 

 
The average pickup delay time and average delivery delay time are shown in Figure 6 and 
Figure 7 respectively.  The results reveal that the experimental scenarios with tight time 
window will obtain the vehicle routes with less average pickup delay time and average 
delivery delay time. 
 

 
Figure 6. The relationship between the average pickup delay time and time window 
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Figure 7. The relationship between the average delivery delay time and time window 

 
The relationship between the number of vehicles and the length of the time window is 
depicted in Figure 8.  The results indicate that the number of vehicles decreases slightly as 
the length of the time window increases.  One of the reasons might be that the scenario under 
the wide length of the time window can easily assign more customers into one vehicle. 
 

 
Figure 8. The relationship between the number of vehicles and time window 
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Figure 9. The relationship between the average travel time and time window 

 
The relationship between the average travel time and the length of the time window is shown 
in Figure 9.  The results reveal that the variation of the time window cannot significantly 
affect the average travel time for each scenario. 
 
6. CONCLUSIONS 
 
In this paper, the time-dependent DARP with time window is formulated.  Based on the 
time-dependent DARP formulation, the Dantzig-Wolfe decomposition is used to decompose 
the DARP into the master problem and subproblem.  Then, the brand-and-price approach is 
applied to deal with the time-dependent DARP with time window.  According to the results 
of the numerical experiments, the brand-and-price approach is capable of handling DARP.   
 
In the numerical experiments, two major factors including the time window and traffic 
condition are experimented to implement the sensitivity analysis.  The experimental results 
show that the length of the time window can significantly affect the objective value, 
computational time, average pickup delay time, average delivery delay time and number of 
vehicles.  When the length of the time window increase, the objective value will decrease 
slightly and the computational time will increase exponentially. 
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