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Abstract: This paper examines the reliability-based stochastic transit assignment problem 

with elastic demand. A Variational Inequality (VI) model for this problem is developed. The 

VI model considers capacity, waiting time and in-vehicle travel time as stochastic variables, 

and includes Spiess and Florian’s (1989) and de Cea and Fernández’s (1993) models as 

special cases. A reliability-based stochastic user equilibrium condition is defined to capture 

the route choice behavior of passengers. To illustrate the properties of the VI model, 

numerical studies were conducted on de Cea and Fernández’s (1993) network. The studies 

also show that Spiess and Florian’s and de Cea and Fernández’s models can overestimate the 

system performance substantially. 

Keywords: Reliability-Based Stochastic User Equilibrium, Elastic Demand, Transit 

Assignment, Variational Inequality, Effective Travel Cost 

1. INTRODUCTION

Transit assignment received much attention in the past. Its models could be used for planning 

and managing transit services. Existing transit assignment models can be broadly classified 

into two types: schedule-based and frequency-based. Schedule-based models (e.g., Tong and 

Wong, 1998; Nguyen et al., 2001; Nuzzolo et al., 2001; Poon et al., 2004; Hamdouch and 

Lawphongpanich, 2008; Sumalee et al., 2009; Hamdouch et al., 2011) generally use detailed 

departure or arrival times of each transit vehicle in making assignment decisions and 

determine the patronage of transit lines over time. The models are suitable for transit line 

operation control where the departure times of transit vehicles at each stop are the key 

decisions to be made. Frequency-based models (e.g., Spiess and Florian, 1989; de Cea and 

Fernández, 1993; Lam et al., 1999, 2002; Cepeda et al., 2006; Teklu, 2008; Szeto et al., 2011a, 

b) ignore the detailed departure times and often allocate passenger demands to the set of

attractive transit lines based on service frequency. The models are more computationally 

efficient and can handle larger transit networks. Hence, they are more suitable for designing 

route and frequency in large, realistic transit networks. 

Although many frequency-based models were developed, four issues are worth 

mentioning. First, most of the existing frequency-based models (e.g., de Cea and Fernández, 
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1993; Cominetti and Correa, 2001; Cepeda et al., 2006) only consider deterministic networks. 

In fact, due to supply side uncertainties such as capacity uncertainties, travel times including 

waiting time and in-vehicle travel time are stochastic. Hence, it is essential to capture the 

uncertainties into transit assignment models to have a more accurate analysis for transit 

planning and management purposes. Second, the behavioral choice principle of passengers in 

most of the frequency-based models does not consider the variability of trip time (e.g., de Cea 

and Fernández, 1993; Lam et al., 1999; Lam et al., 2002). However, empirical studies show 

that travel time variability indeed affects the choice behavior of passengers (Abdel-Aty et al., 

1997 and Jackson and Jucker, 1982). It is important to capture this variability into transit 

assignment models. Although some existing studies (Yang et al., 2006; Li et al., 2008, 2009; 

Chen et al., 2011; Sumalee et al., 2011; Fu et al., 2012) propose stochastic models to 

incorporate the uncertainties of travel time, the random variables are often assumed to follow 

certain distributions. Third, most of existing frequency-based models (e.g., Spiess and Florian, 

1989; de Cea and Fernández, 1993; Szeto et al., 2011a, 2011b) assume that passengers have 

perfect information about the transit network status. However, in reality, they may not have as 

the real time information may not be given at transit stops and on the web. It is imperative to 

capture their choice behavior in the transit assignment models. Fourth, most studies (e.g., 

Spiess and Florian, 1989; de Cea and Fernández, 1993) ignore demand elasticity. Their 

models cannot be used to study the transit pattern for social and recreational trips where the 

demand is highly elastic. 

 To address the above issues, this paper proposes a reliability-based stochastic transit 

assignment model with elastic demand. Compared with most of the existing stochastic transit 

assignment models, the contributions of this paper include: 

 Considering the stochasticity of waiting time, link capacity, and in-vehicle travel time in 

the model; 

 Capturing the risk-averse behavior and perception error of passengers simultaneously in 

the proposed model; 

 Incorporating transit demand elasticity into the model through an elastic demand 

function; and,  

 Formulating the proposed transit assignment problem as a Variational Inequality 

problem, which includes Spiess and Florian (1989) and de Cea and Fernández (1993) 

models as special cases. No normal distribution assumption is required in the 

formulation. In fact, the formulation is distribution-free. 

 The remainder of the paper is organized as follows: Section 2 introduces the general 

representation of transit networks, terminologies, and the assumptions that are relevant to our 

work. Section 3 reviews the effective frequency concept. Section 4 elucidates the various 

components of the cost function. While Section 5 describes the idea of effective travel cost, 

Section 6 postulates the RSUE condition and a VI formulation for the stochastic user 

equilibrium transit assignment problem. Section 7 discusses the computational results. Finally, 

Section 8 provides concluding remarks and identifies directions for future research. 

 

 

2. NETWORK REPRESENTATION, TERMINOLOGIES, AND ASSUMPTIONS 

 

As in de Cea and Fernández (1993) and Lam et al. (1999, 2002), a transit network generally 

consists of a set of transit lines and stations (nodes) where passengers can board, alight or 

change vehicles. A transit line can be described by the frequency of the vehicles (i.e., the 

number of vehicles of a transit line going across a screenline in a unit of time) and the vehicle 
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types (e.g., bus or underground train). Note that in this paper the walk links will not be 

distinguished from the transit lines because it may be replaced by a transit line with a zero 

waiting time (a very high service frequency). Different transit lines may run parallel for part 

of their itineraries with some stations in common. A line segment is a portion of any transit 

line between two consecutive stations of its itinerary and is characterized by a travel time and 

a frequency. A transit route is any path that a transit passenger can follow on the transit 

network in order to travel between an origin and a destination. Generally, the route will be 

identified by a sequence of nodes, the first node being the origin of the trip, the final node 

being the destination and all the intermediate nodes being the transfer points. The portion of a 

route between two consecutive transfer nodes is called route section or link, which is 

associated with a set of attractive lines or common lines. Without loss of generality, a transit 

network can also be represented by a set of nodes and route sections. 

 

 
 

 

L2 (6/10)

L3 (4/4)

A X Y B

L1 (25/10)

L4 (10/20)

L3 (4/4)

L2 (7/10)

Figure 1a. Line-node representation 

 

A X Y B

S1(L1)

S3(L2,L3)

S6(L3)

S4(L3,L4)S2(L2)

S5(L2)

Figure 1b. Route-section representation 

 

Route 1 

Route 2 
Route 3 

Route 4 

Figure 1c. Four transit routes between A and B 

Figure 1. Two transit network represenations for an OD pair with four paths 
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 For illustrative purposes, we adopt the network in de Cea and Fernández (1993) as an 

example. Figure 1 represents a transit network in two ways, namely line-node and route 

section representations. In this figure, L1 stands for line 1 and S3(L2,L3) stands for route 

section 3 where Lines 2 and 3 are on this route section. Other notations in the figure are 

defined similarly. In the figure, there is one origin-destination (OD) pair A-B and two transfer 

stations X and Y. OD pair A-B is connected by four different routes. The four routes are 

formed by four different lines, each with its travel time and frequency. For example, (25/10) 

on the line 1 going from A to B, denotes a travel time of 25 minutes and frequency of 10 

buses/hour. At node 1, passengers need to decide to get into either L1 or L2 but not both, 

because they depart from different bus terminals. 

 We assume that a passenger waiting at a transfer node only considers an attractive set of 

lines before boarding. The travel demand between each OD is assumed to be elastic and 

passenger arrivals at bus stops are assumed to be random. We also assume that the passenger 

selects the transit route that minimizes his/her perceived effective travel cost discussed later. 

Time and cost are used interchangeably throughout this paper assuming the value of time is 

equal to 1. Stochastic vehicle headways with the same distribution function are assumed for 

vehicles servicing different lines. However, the difference in vehicle headway traversing 

different lines can be achieved by varying the parameters of the distribution function. We also 

assume that the capacity of the transit system is limited by the capacities of transit vehicles. 

 

 

3. EFFECTIVE FREQUENCY 

 

To model the effect of in-vehicle congestion in a transit network, we adopt a similar idea of 

effective frequency introduced by de Cea and Fernández (1993). In a transit network 

constrained by its capacity, there is a positive probability that a transit vehicle arriving at a 

stop is full. Hence, passengers have to wait for the next transit vehicle and this causes the 

frequency of the line at that particular stop to be effectively reduced from the passengers' 

point of view. This reduced line frequency is called effective frequency. In an ideal case, 

when there is no congestion, the effective frequency will be equal to its line frequency. 

Mathematically, the effective frequency can be expressed as:  

 = ,  , ,l

s s
l

sl

f l A s

f






    



  (1) 

where
 

l

sf   is the effective frequency
 
of line l on route section s . 

lf
 
is the frequency of line l. 


 
is a positive parameter used to model the effect of different perceptions of waiting time and 

headway distributions. 
l

s  is the additional (mean) waiting time for line l at stop ( )i s , the 

origin node of route section s, due to in-vehicle congestion. As is the set of attractive lines 

associated with route section s.  is the set of route sections.  

 In this paper, the additional waiting time for line l is expressed as:  

 = , , ,

m

ill l

s sl

v
l A s

K
 

 
    

 
  (2) 

where 
lK  is the capacity of line l. ilv  is the number of passengers per hour boarding line l 

before the origin node ( )i s  of route section s and alighting after node ( )i s . 
l  and m are 
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positive calibration parameters. Eq. (2) can be interpreted as follows: The fraction 
il

l

v

K
 is 

interpreted as the occupancy rate, which is a measure of in-vehicle congestion. When the 

occupancy rate increases, the additional waiting time increases. Moreover, for a given 

occupancy rate, larger values of m and l  mean that more passengers are willing to wait at 

the bus stop for the next arriving vehicle, leading to higher additional waiting time.  

 The capacity lK  of line l is given by  

 = ,  ,l lK f k l   (3) 

where k is the capacity of a transit vehicle and is assumed to be constant for all the vehicles 

servicing different routes for simplicity, although there is no conceptual difficulty to 

generalize to the situation that different routes have different vehicle capacities. 

 

 

4. INDIVIDUAL COST COMPONENTS 

 

The proposed cost function in this paper captures the variabilities of congestion and capacity. 

This cost function is developed based on the concept of effective travel cost discussed later 

and relate to the mean and variance of individual route section costs. This section describes 

these individual components. 

 The cost on route section s, sC , is described by three random variables:  

 = ,    s s s sC T X s    ,   (4) 

where sT  is the in-vehicle travel time on route section s. sX  is the waiting time for the first 

arrived vehicle on route section s that is not full. s  is the additional waiting time on route 

section s due to insufficient capacity.  

 

 

4.1 In-vehicle Travel Time 

 

Let 
l

sT , the in-vehicle travel time for line l on route section s, be a random variable. Then, the 

in-vehicle travel time on route section s can be found using the relationship  

 = ,    ,l l

s s s

l A
s

T w T s


   and  (5) 

 = ,    ,
l

l s
s sl

s

l A
s

f
w s l A

f





  


  (6) 

where 
l

sw  is the weight based on the effective frequencies of lines, ,  .sl A s   Effectively, 

Eq. (5) calculates the weighted average of in-vehicle travel times. The expected in-vehicle 

travel time can be obtained by taking expectation on both sides of Eq. (5):  

 [ ] = [ ],    .l l

s s s

l A
s

E T w E T s


    (7) 

 Assume the in-vehicle travel times of different lines are independent. The variance of 

in-vehicle travel time can then be found by  
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  
2

[ ] = [ ],    .l l

s s s

l A
s

Var T w Var T s


    (8) 

 In practice, in-vehicle travel times between different line sections and between different 

lines sharing the same route section are not likely to be independent. When these in-vehicle 

travel times are highly correlated, covariance terms must be added to Eq. (8) to improve the 

accuracy of modeling. 

 

4.2 Waiting Time for the First Arrived Vehicle 

  

The waiting time distribution for the arrival of the first vehicle that is not full can be derived 

from the headway distribution of transit vehicles as discussed in Spiess and Florian (1989) but 

here we incorporate the concept of effective frequency in determining the mean and variance 

of waiting time for the first arrived vehicles. Assuming that passengers arrive at bus stops 

randomly, the waiting time distribution for line l on route section s  can be given by  

 

0

[1 ( )]
( ) = ,  , ,

[1 ( )]

l
l s
s s

l

s

H x
g x l A s

H t dt



   


 (9) 

where ( )l

sH x  is the cumulative distribution of the interarrival times (or headways). By 

definition, the cumulative distribution function of waiting time for line l on route section s, 

denoted by ( )l

sG x , can then be obtained as  

 
0

( ) = { } ( ) ,  , ,
x

l l l

s s s sG x P X x g t dt l A s       (10) 

where 
l

sX  is the waiting time for line sl A .  

 Using Eqs. (9) and (10), we can determine the means and variances of waiting time for a 

particular line l on route section s and those for route section s based on the assumed 

distribution of vehicle headway. Particular, when the headway for line l  on route section s is 

exponentially distributed with mean / l

sf  . Hence, we have  

 ( ) =1 ,  , .

l
sf x

l

s sH x e l A s




       (11) 

Substituting Eq. (11) into Eq. (9) and then substituting the resulting expression into Eq.(10), 

we get  

 ( ) =1 ,  , ,

l
sf x

l

s sG x e l A s




       (12) 

which means that the waiting time of line l on route section s is exponentially distributed with 

mean / l

sf  . 

 The mean and variance of waiting time on route section s can be deduced from the 

cumulative distribution function (12) by calculating the first and second moments of the 

waiting time ,sX as shown below:  

 
0

[ ] = {1 ( )} ,  
ss XE X F t dt s



   , and  (13) 

 
2

0
[ ] = 2 {1 ( )} ,  .

ss XE X t F t dt s


     (14) 

 Assuming that the waiting time on each line l of route section s to be independent of 

each other, the brace terms in Eqs. (13) and (14) can be expressed as 
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 1 ( ) ( ) = ( )
s

l

X s s

l A
s

F x P X x P X x


    = {1 ( )},  .l

s

l A
s

G x s


    (15) 

 Then, the first and second moments can be simplified by putting Eqs. (12) and (15) into 

both Eqs. (13) and (14) as follows: 

 
0

[ ] = {1 ( )} = ,  ,l

s s l
l A ss

l A
s

E X G t dt s
f







  


 
 and  (16) 

 2

0
[ ] = 2 {1 ( )}l

s s

l A
s

E X t G t dt





2

2

2
= ,  

( )l

s

l A
s

s
f





 


.  (17) 

Since the variance of sX  can be determined by 

 
2 2[ ] = [ ] ( [ ]) ,  s s sVar X E X E X s   ,  (18) 

we can substitute Eqs. (16) and (17) into Eq. (18) to get 

 
2

2
( ) = ,  .

( )
s l

s

l A
s

Var X s
f





 


  (19) 

 

4.3 Congestion Cost 

 

The congestion cost of section s depends on the flow or the number of passengers per hour on 

route section s, Vs, as well as the flow on the sections competing with section s, sV . Vs  can be 

obtained once all the route flows on section s are known: 

 = ,    w

s sr r

w r
w

V b y s
 

   ,  (20) 

where 
w

ry
 
is the flow on route r between OD pair w. 

 
is the set of OD pairs.

 w  is the set 

of routes between
 
OD pair w. srb  is the route-section route incidence indicator, which equals 1 

if route section s is a part of route r , and equals 0 otherwise. 

 The flow on the sections competing with section s, sV , is made up of two groups of 

passenger flows, namely group-1 and 2 flows. Group-1 flow is the number of passengers per 

hour boarding at node ( )i s  and those who will not transfer to other lines and finish their trips 

at the destination node of route section s. Group-2 flow is the number of passengers per hour 

boarding the lines belonging to route section s before ( )i s  and alighting after ( )i s . Essentially, 

sV  represents the flows that compete with Vs for the capacities of the same set of attractive 

lines. The difference lies in that Vs represents the flow boarding at the origin of section s and 

alighting at the end of section s. sV  represents the flow either boarding before the origin of 

section s (i.e., group-1 flow) or alighting after section s (i.e., group-2 flow) using the lines 

belonging to the attractive set of lines on section s. The flow sV  excludes the flow on route 

section s, Vs. Mathematically, sV  is given as follows: 

 ,  
s s lsls

s

l A l A SS

l l

s s

ss

V v v s
  

      ,   (21) 
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where l

sv
 
is the number of passengers per hour on line l in route section s. lsS   is the set of 

route sections going out from node ( )i s  and containing line l  but excludes route section s. lsS  

is the set of route sections containing line l with their origin nodes before ( )i s  and their 

destination nodes after ( )i s . Assuming that the passengers board on the first arrived transit 

vehicles, 
l

sv
 
in can be found by 

 
 = ,    , .

l
l s
s s sj

s

j A
s

f
v V l A s

f



   


  (22) 

 The mean and variance of congestion cost is derived from the proposed congestion cost 

function, which is more general than the one proposed by de Cea and Fernández (1993). The 

congestion cost function for route section s is expressed as 

 = ,

n

s s
s s

s

V V
s

K
 

 
  

 
,  (23) 

where s  and n are calibration parameters. sK  is the capacity of route section s. sV  is the 

flow or number of passengers per hour on route section s.  

 The route section capacity Ks is defined as: 

 ,  s

s

k
K s

h


    ,   (24) 

where  is a conversion factor, and sh  is the headway of transit vehicles on route section s. k 

refers to the capacity of a single vehicle. If the unit for headway is minutes and that for the 

capacity of a line is passengers per hour, then   = 60 min/hr. 

 Since headway is a random variable, the capacity is also a random variable according to 

Eq. (24) and hence the congestion cost is also a random variable according to Eq. (23). 

Substituting Eq. (24) into Eq. (23), and taking expectation and variance on both sides of the 

resulting expression, we get  

 = [( ) ],  

n

ns s
s s s

V V
E E h s

k
 



 
     

 
, and  (25) 

 

2

2= [( ) ],  

n

ns s
s s s

V V
Var Var h s

k
 



 
     

 
, respectively. (26) 

Since  ~ / ,l l

s sh Exp f s   , according to the property of superposition of Poisson processes, 

 ~ / ,s sh Exp f s   , where  

 ,  
s

l

s s

l A

f f s


    .   (27) 

The expected value and variance of ( )n

sh  can then be found by:  

 
1

0
[( ) ] = = ! ,  ,

s
nf

t
n n

s

s

E h n t e dt n s
f







  
  

 
  and (28) 

  
2

2 2 2[( ) ] = [( ) ] ( [( ) ]) (2 )! ( !) ,  .

n

n n n

s s s

s

Var h E h E h n n s
f

 
     

 
  (29) 
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Substituting Eqs. (28) and (29) in Eqs. (25) and (26) respectively, we obtain the expected 

value and variance of the congestion cost on route section s  as shown below:  

 
( )

= ! ,  ,

n

s s
s s

s

V V
E n s

kf


 



 
       

 and (30) 

 

2

2 2 ( )
= ((2 )! ( !) ) ,  .

n

s s
s s

s

V V
Var n n s

kf


 



 
        

 (31) 

 

 

5. EFFECTIVE TRAVEL COST 
 

The variabilities associated with the in-vehicle travel time and waiting time, coupled with the 

effect of congestion causes variability in route travel time. Due to this, passengers cannot 

determine the exact total trip time to complete their journeys. The variability in route travel 

time is countered by early departures to allow for additional time to avoid late arrivals. This 

additional time is included by the passengers while planning their trips, and is referred to as 

safety margin. This safety margin plus the expected trip time is known as effective travel cost 

or travel time budget (Lo et al., 2006). Mathematically, the effective travel cost on a particular 

route can be formulated as  

 = [ ] ( ), , ,w w w

r r r wE E C Var C r w      (32) 

where 
w

rE  is the effective travel cost of route r between OD pair w. 
w

rC  is the trip travel time 

(including in-vehicle travel time and waiting time) on route r  connecting OD pair w.  is the 

parameter related to the requirement of arriving within time. For trips that have a high penalty 

on lateness, passengers will reserve a relatively large safety margin, or equivalently, a high 

value of  .The term ( )w

rVar C  is interpreted as the safety margin of passengers. The 

parameter   relates to the probability that the actual trip travel cost is not greater than 

effective travel cost:  

 { = [ ] ( )} = ,w w w w

r r r rP C E E C Var C    (33) 

where  is referred to as within budget time reliability or the probability that the trip travel 

time is not greater than the effective travel cost. Similar to Lo et al. (2006), it can be verified 

that if the Lindeberg condition is satisfied, then the route travel time 
w

rC  follows a normal 

distribution according to the Central Limit Theorem, regardless of individual independent link 

travel time distribution. As a result, the random variable 
w

rC  can be normalized as shown 

below:  

 
[ ]

= .
( )

w w

r r

w

r

C E C
P

Var C
 

  
 

  

  (34) 

Let 
[ ]

=
( )

w w

r r
wC wr

r

C E C
Z

Var C


 denote the standard normal variate of 

w

rC  and hence Eq. (34) can be 

written as:  

 ( ) = .wC
r

P Z     (35) 
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The parameter , can then be interpreted as the degree of risk aversion of passengers. A 

higher value of  means that passenger is more risk-aversive, while a lower value means that 

passenger is more risk-prone. Thus the value of  totally depends on the individual's appetite 

for risk-taking and the purpose of the trip.   

 The route cost, 
w

rC , is related to route section costs as follows: 

 = ,  ,w

r sr s w

s S

C b C r w


    .  (36) 

Taking expectation and variance on both sides of Eq. (36), we get the following respectively:
 

 [ ] = [ ],  ,w

r sr s w

s S

E C b E C r w


     , and (37) 

 [ ] = [ ],  ,w

r sr s w

s S

Var C b Var C r w


    , (38) 

where the variances of route costs are assumed to be independent of each other. The effective 

travel cost on route r between OD pair w can then be obtained by substituting Eqs.(37), and  

(38) into Eq.(32): 

 [ ] [ ],  ,w

r sr s sr s w

s S s S

E b E C b Var C r w
 

       . (39) 

By taking expectation and variance on both sides of Eq. (4) respectively and substituting the 

resulting expressions into Eq. (39), we have: 

 

  

 

[ ] [ ]

         [ ] [ ] [ ] ,  , ,

w

r sr s s s

s S

sr s s s w

s S

E b E T E X E

b Var T Var X Var r w



 





  

      




 (40) 

which is the travel cost function used in this paper. 

 

 

6. PROBLEM FORMULATION 

 

In a congested transit network, due to the lack of perfect information on the network condition, 

a variation in the passengers’ perception of effective travel cost is bound to exist. This 

variation is modeled by a random variable called perceived effective travel cost, ,w

rB
 
which 

can be expressed as a sum of effective travel cost and a random error term, ,w

r  
such that 

[ ] = 0w

rE  . Hence, [ ] = , , .w w

r r wE B E r w    

 Assuming that all passengers choose the routes with minimum perceived effective travel 

cost, we define reliability-based stochastic user equilibrium (RSUE) condition as follows: 

 

Definition 1: The transit network is said to be at reliability-based stochastic user equilibrium, 

if for each OD pair, the perceived effective travel cost of each route is equal and no passenger 

can reduce his/her perceived effective travel cost by unilaterally changing routes. 

 

 Mathematically, the RSUE condition can be expressed as: 

  or 0,     , ,w w w w

r r w r r w wy p q y p q r w        (41) 

where 
w

ry  is the passenger route flow on route r connecting OD pair w . wq is the 

demand of OD pair w . 
w

rp
 
is the probability of selecting route wr  between OD pair 
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w . The above condition ensures that the perceived effective travel cost of each route is 

equal. 

 If the random error term, w

r , is assumed to be identically and independently Gumbel 

distributed random variables with mean zero and identical standard deviation, the route choice 

probability, 
w

rp , for route ,wr w 
 
can be given by the following logit formula: 

 
exp( )

,    , ,
exp( )

w

w
w r
r ww

k

k R

E
p r w

E



 




    


 (42) 

where 0   is a given parameter which measures the passengers’ perceptions of effective 

travel cost on a particular route in transit networks. A higher value of   implies a smaller 

perception error.  

 The demand is assumed to be a decreasing function of the perceived effective travel cost 
wS , which can be expressed as: 

 
1

log exp( ) ,    .
w

w w

r

r R

S E w
 

 
     

 
  (43) 

In this study, the following function is adopted for the purpose of analysis: 

  0 ,    ,
e

w wq q S w


     (44) 

where 0q  is the maximum potential demand and e is the demand elasticity. When 0e  , 

demand is totally inelastic. 

 The proposed doubly stochastic transit assignment problem can be formulated as a VI 

problem via the approach described in Szeto and Lo (2005): 

Find 
*w

ry   such that  

   * * * * 0,     ,r

w

mw w w w w

r r w r r r

w W r R

y p q y y y R

 

       (45) 

where r w

w

m R  and the superscript * refers to the solution of the VI problem. 
w

rp  and wq

in VI (45) are defined by (1)-(3), (7), (8), (16), (19)-(26), (30), (31), (40), (42)-(44). When 

  , the RSUE solution tends to the reliability-based deterministic user equilibrium 

(RDUE) solution. Further, if 0   and e = 0, then the RSUE solution tends to the de Cea and 

Fernández solution. Further, if 0l

s   , then the RSUE solution tends to the Spiess and 

Florian solution. 

 The VI problem (45) can be written in vector form as below: 

  * *( )( ) 0, ,  where = , = [ ].rmT w w w

r r w rR y p q y
      E Y Y Y Y E Y Y  (46) 

 According to Nagurney (1999), a solution exists to the VI problem (46) when ( )E Y  is 

continuous with respect to Y  (or 
w

rE  is continuous with respect to 
w

ry ) and the solution set is 

bounded and closed (i.e., compact). In addition, the solution is unique when ( )E Y  is strictly 

monotonic with respect to Y . Clearly, the solution set is compact in this problem. It is 

because the route flows cannot be greater than the corresponding maximum potential demand 

so that the solution set must be bounded by a sphere with its radius equal to the largest 

demand of all OD pairs. Moreover, 
w

rE  is continuous with respect to 
w

ry  as all the functions 
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involved for calculating w

rE  are continuous of w

ry . Therefore, ( )E Y  is continuous with 

respect to Y and a solution exists to the proposed VI problem.  

 The VI formulation (46) can be reformulated into the following unconstrained and 

differentiable minimization program via the approach in Szeto et al. (2006):  

        
2

2 21
min

2
w

w w w w w w

r r r w r r r w

w W r R

G y y p q y y p q
 

 
      

 
 Y . (47) 

When the objective function value is equal to the global minimum of zero, the optimal 

solution obtained is also optimal to the VI problem (46). Hence, the VI problem (46) can be 

solved by many existing optimization methods. In this paper, the unconstrained minimization 

problem (47) is solved by Premium Solver Platform. 

 

 

7. NUMERICAL EXAMPLES 

 

To illustrate the properties of the problem, numerical studies were carried out. The example 

network adopted was the one discussed in Section 2. The basic link data related to the network 

is given in Table 1. All vehicle capacities were set to 10 passengers/bus. The headway was 

assumed to be exponentially distributed with mean 1/ l

sf . The above parameters were 

identical as the ones in de Cea and Fernández (1993), except that the variances were set 

arbitrarily. The other parameters were set as follows: 1,l   0.1s  , θ = 0.1, 4, 3,m n 

60    min/hr, 0 200q  pass/h, e = 0.2, and 95%,   unless otherwise specified. 

 

Table 1. Travel times and variances for route sections 
Route Section S1 S2 S3 S4 S5 S6 

Mean (min) 25 7 5.4 9 13 8 

Variance (min
2
) 3 12 6.8 15.8 35 14 

Note: Italic fonts denote weighted average travel times or variances 

 

 To illustrate the effects of the congestion factor parameter, n, and the maximum 

potential demand on the perceived effective travel cost, Figure 2(a) is plotted. It can be 

inferred that the perceived effective travel cost is monotonically increasing with the maximum 

potential demand for various values of n. This is reasonable as a higher potential demand 

results in higher travel demand, a more congested transit network and therefore a higher travel 

cost. The perceived effective travel cost is also monotonically increasing with n for various 

maximum potential demand levels. This is because for a given level of service, the value of n  

increases means that more passengers are willing to wait for the next arriving vehicle and 

hence the congestion cost increases. This increase results in a corresponding increase in the 

perceived effective travel cost and the perceived effective travel cost. 

 Figure 2(b) shows the perceived effective travel cost for various values of the maximum 

potential demand and . As expected, the perceived effective travel cost is monotonically 

increasing with the maximum potential demand for various values of , since the congestion 

cost increases with the maximum potential demand. Figure 2(c) plots the results for the 

perceived effective travel cost for various changes in frequency of each line and various 

values of  . The x-axis is for the changes in frequency. For example, -2 represents the setting 

that the frequencies of all lines were reduced by 2. From this figure, we observe that the 

changes in the frequencies under various risk aversion behaviors have a strong influence on 
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the perceived effective travel cost. As the frequency decreases, there is a sharp increase in the 

perceived effective travel cost, because a lower frequency results in higher means and 

variances of waiting cost and congestion cost. Moreover, the influence of frequency on the 

most risk-aversive passengers is the largest as they are very sensitive to the changes in mean 

and variance of waiting time. 

 From Figures 2(b) and 2(c), it can also be observed that the perceived effective travel 

cost increases with the value of , since a more risk-aversive passenger has a larger safety 

margin. In particular, the passengers who fall under the category of λ = 99.7% reserve a larger 

safety margin, as can be seen in Figure 3. However, when λ = 50%, the passengers do not 

reserve any safety margin because they only consider the mean travel cost and ignore the 

variance of travel cost. The variations in safety margin reserved by passengers with different 

risk-taking behaviors on all the four routes can also be observed in Figure 3. The variations 

are due to different travel time uncertainties on these routes. Risk aversive passengers reserve 

larger safety margins for more uncertain routes. 

   
  

(a) Effect of various values of q
0
 and n on the perceived effective travel cost  

 

   
(b) Effect of various values of q

0
 and on the perceived effective travel cost 
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(c) Effect of various values of frequency and on the perceived effective travel cost 

Figure 2. Effects of various parameters on the perceived effective travel cost 

 

   
Figure 3. Safety margin for each route at different degrees of risk aversion 

  

 Table 2 presents the RSUE route flows, the mean and variance of route travel cost, and 

effective travel cost for passengers with different degrees of risk aversion. From these results, 

we can see that the degree of risk aversion has a major influence in determining the route flow 

pattern. For λ = 95% and 99.7%, route 1 is highly attractive when the maximum potential 

demand is 200 pass/h. This is because the effective travel cost is the lowest for this particular 

route and hence highly risk-aversive passengers choose this route. Similarly, route 2 is also 

attractive as the mean travel cost is the lowest and the variance is not too large, so that route 2 

has a very similar effective travel cost compared with route 1. However, route 4 attracts the 

least flow due to its large effective travel cost. The large effective total travel cost is due to a 

large travel cost variance compared with the variances of other routes. However, the 

passenger flow on this high variance route increases, as  decreases. The reduction in  

implies the increase in the tolerance level of passengers to arrive late at their destination and 

hence the increase in flow on the route with a high variance. When decreases to 50%, the 

flow on route 4 increases to the level similar to the flows on other routes, because passengers 

ignore the variance and the mean travel costs of all routes are similar. The implication is that 

ignoring the risk aversion in transit assignment can wrongly estimate the flow pattern and 
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hence the total travel cost and the level of service of each line. Indeed, the variance of each 

route increases as  decreases. This observation is consistent with the trend observed in Figure 

3, because the higher is the variance, the larger is the safety margin reserved for that particular 

route. 

 

Table 2. The influence of degree of risk aversion 

Route Route Flow 
Travel cost w

rE  
Mean Variance 

λ=99.7%     

1 53.3 31.1 39.2 48.3 

2 22.2 30.5 93.1 57.0 

3 14.8 34.3 95.2 61.1 

4 1.7 36.0 287.0 82.6 

λ=95%     

1 45.1 31.1 39.1 41.3 

2 27.0 30.6 93.1 46.5 

3 18.2 34.3 95.3 50.4 

4 4.7 36.1 287.1 64.0 

λ=50%     

1 30.4 31.0 39.0 31.0 

2 31.2 30.7 93.9 30.7 

3 21.4 34.5 96.1 34.5 

4 17.8 36.3 288.2 36.3 

 

  

Table 3.  Route flows and effective travel costs for various values of θ 
θ 0.1 1.0 RDUE 

Route 
w

ry  
w

rE  
w

ry  
w

rE  
w

ry  
w

rE  

λ=99.7%       

1 53.3 48.3 91.6 49.5 91.6 49.5 

2 22.2 57.0 0.0 57.0 0 57.0 

3 14.8 61.1 0.0 61.0 0 61.0 

4 1.7 82.6 0.0 82.6 0 82.6 

λ=95%       

1 45.1 41.3 92.9 42.3 94.5 42.4 

2 27.0 46.5 1.6 46.4 0 46.4 

3 18.2 50.4 0.0 50.3 0 50.3 

4 4.7 64.0 0.0 63.9 0 63.9 

λ=50%       

1 30.4 31.0 40.0 31.0 8.6 31.0 

2 31.2 30.7 59.3 30.6 92.1 31.0 

3 21.4 34.5 1.4 34.4 0 34.9 

4 17.8 36.3 0.2 36.1 0 36.5 

  

 Table 3 reports the route flows for various values of θ and λ. Experimental runs were 

carried out for θ = 0.1 and 1.0 and the reliability-based deterministic user equilibrium (RDUE) 

cases. As θ increases, the flow on route 4 decreases, irrespective of the value of λ. A higher 

value of θ means better passengers’ knowledge about the travel time, waiting time and their 

variances in the transit network and hence, the flow on route 4 with high effective travel cost 
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is reduced. Similar inference can be drawn from Figure 4(a), which plots the flow on route 1, 

for various values of θ. As θ increases, the flow on route 1 also increases for λ = 95% and 

99.7%,  since more passengers know that route 1 is the actual best route in terms of effective 

travel cost. Similarly, for λ = 50%, the flows on routes 1 and 2 increases with an increasing 

value of θ as shown in Table 3, since more passengers know that the mean travel cost on these 

two routes are very close (their difference is only 0.3) and are lower than routes 3 and 4. 

However, when θ becomes larger, the small difference in the mean travel time of routes 3 and 

4 matters, and more passengers select the least mean travel route and hence the flow on route 

1 drops eventually as θ increases. 

 As shown in Table 3, the route flow pattern for θ = 1.0 is close to the RDUE flow 

pattern except that for λ = 99.7%, the two flow patterns look identical due to the truncation 

error. Indeed, as θ approaches to infinity, the resultant flow pattern tends to the RDUE flow 

pattern. One more comment is that the flows on routes 3 and 4 are exactly equal to 0 for the 

RDUE case but the corresponding flow is not exactly equal to 0 for the RSUE case, as the 

RSUE case guarantees that each route must carry some flows. Their flow values are 

differentiated by 0 and 0.0 respectively. On the other hand, the perceived effective travel cost 

is monotonically increasing with θ for various values of λ (Figure 4b) and approaches the 

effective travel cost of the RDUE case as θ tends to infinity.  

    
(a) Influence of on route flow 

   
(b)  Influence of θ on the perceived effective travel cost 

Figure 4. Influence of θ on route flow and the perceived effective travel cost 
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 Table 4 compares five fixed demand cases (i.e., 0e  ) to illustrate the effects of 

ignoring congestion, the risk aversion behavior of passengers, and perceived errors on three 

performance measures namely, the total effective travel cost, the total mean travel cost, and 

the total perceived effective travel cost. Following the high congestion case in the appendix of 

de Cea and Fernández (1993), the parameters are set as 
020, 1, 1, 240s m n q     . The 

flow solutions of the de Cea and Fernández approach and the Spiess and Florian approach 

obtained from that appendix were substituted into our model with  = 99.7% to compute the 

performance measures in Table 4. The number in parenthesis represents the percentage 

change in the performance measure compared with case 1 (i.e., RSUE, θ = 0.1) and case 2 

(RSUE, θ = 0.5) respectively. Case 3 is the case of RDUE. Case 4 considers the de Cea and 

Fernández approach that ignores the risk aversion behavior of passengers. Case 5 considers 

the Spiess and Florian approach that ignores both the effects of congestion and the risk 

aversion behavior of passengers on transit assignment. It can be learnt from the table that case 

3 underestimates the total effective travel cost, while it overestimates the total perceived travel 

cost. Compared with case 1, case 3 underestimates the total perceived travel cost greatly 

(more than 6%). Cases 4 and 5 overestimate all three performance measures as compared to 

the cases 1 and 2. In the extreme case, their approaches overestimate the total perceived 

effective travel cost by more than 14%. Because of ignoring the effects of congestion and risk 

aversion behavior, case 3 and 4 models overestimate the flows on some routes with high 

congestion levels or variances, which is unrealistic and inaccurate.  

 

Table 4. A comparison of performance measures calculated via different approaches 

 
Case 1: 

RSUE, 

θ = 0.1 

Case 2: 

RSUE, 

θ = 0.5 

Case 3:  

RDUE 

Case 4:  

The de Cea and 

Fernández approach 

Case 5: 

 The Spiess and 

Florian approach 

Total mean 

travel cost 

 

14384.2 

 

14181.9 
14182.7  

(-1.4%, 0.01%) 

14487.6  

(0.7%, 2.2%) 

15006.7  

(4.3%, 5.8%) 

Total effective 

travel cost 

 

31923.9 

 

31554.9 31521.8 

(-1.3%, -0.1%) 

 

32859.1 

(2.9%, 4.1%) 

 

33818.4 

(5.9%, 7.2%) 

Total perceived 

effective travel 

cost 

 

29617.2 

 

 

31177.2 

 

31521.8 

(6.4%, 1.1%) 

 

32859.1 

(10.9%, 5.4%) 

33818.4 

(14.2%, 8.5%) 

 

  

 

8. CONCLUSIONS 

 

In this paper, a VI formulation is proposed for reliability-based stochastic transit assignment 

problems with elastic demand. Compared with Spiess and Florian’s and de Cea and 

Fernández’s models, the VI formulation captures the effect of congestion, perceived errors on 

travel times, and the risk-aversive behavior of passengers, and includes their models as special 

cases. In-vehicle travel time, waiting time, and the additional waiting due to congestion are 

considered as stochastic variables and their means and variances are used to define the 

reliability-based stochastic user equilibrium condition. To illustrate the properties of the 

proposed model, sensitivity studies were carried out. A numerical study was also set up to 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



   

 

show that Spiess and Florian’s and de Cea and Fernández’s models can overestimate the 

system performance measures. This seems to indicate that when most passengers in congested 

transit networks are risk-averse and have imperfect information on transit performance, transit 

assignment models that can capture these two issues including ours should be used to predict 

the patronage of transit lines to have more accurate and realistic results. 

 The proposed formulation considers a constant capacity for all the transit vehicles in 

transit network. While this is not realistic, it is not difficult to extend the formulation so that it 

can accommodate vehicles of different types and different capacities. We leave this to future 

studies. The formulation proposed here incorporates only single-class passengers. As a topic 

of further interest, multiple user classes can be considered under the given setting. Moreover, 

the assumption of exponential headway distribution is realistic to the transit stops without 

dynamic passenger information systems but may not be realistic to the stops with these 

systems. In the future, one can extend the proposed framework in this paper to consider the 

realistic assumption mentioned in Nökel and Wekeck (2009) for transit assignment under the 

provision of dynamic passenger information systems. Furthermore, this formulation does not 

consider demand uncertainties. Extending this formulation to consider both demand and 

supply uncertainties is one important future research direction. In addition, the proposed 

problem formulation was solved using commercially available general-purpose software. The 

special structure of the problem has not been used to solve for solutions efficiently. One may 

investigate the special structure to develop an efficient and convergent solution method in the 

future. In addition, based upon the model proposed here, we can develop transit network 

design models with uncertainty consideration. 
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