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Abstract: Synthetic population generator is the core component of the microsimulation in 

activity-based travel demand model. Typically, synthetic population is used in the way that 

their decisions on activity-travel pattern are simulated. Traditionally, household sample survey 

data is used to synthesize the population. The estimated results can be biased due to such as 

low-sampling size and inaccurate household sample data. To deal with this issue, a statistical 

maximum-likelihood method to calibrate synthetic population using the roadside observations 

(link counts) is proposed. Statistical performances of the proposed method are evaluated on 

the illustrative network and real network with census and household sample survey data. 

Multiday link counts are simulated from (true) activity-based model parameters and synthetic 

population. Tests are carried out assuming different number of observations and observation 

variations. The results illustrate the efficiency of the model calibration based on link counts 

and its potential for large and complex applications. 

Keywords: Maximum-likelihood estimation, Link flow, Statistical synthetic population calibration 

1. INTRODUCTION

In recent years, there is growing importance for the development of activity-based models that 

is able to describe travel behavior more realistically than the traditional four-step model. The 

activity-based model (ABM) has been developed by which travel demand is derived from 

activity participation and activity behavior sequences or patterns (Bhat et al., 1999). The 

ABM framework is generally based on agent-based microsimulation by which agents in the 

microsimulation model often represent the individuals, grouped by households, living in the 

study area (e.g. UrbanSim, 2011; MATSim-T, 2011; Bradley et al., 2010; Bhat et al., 2004; 

Bowman et al., 2001, 2006, 2008; Albatross (Arentze and Timmermans, 2004)).  

Alternatively, the agent can also be represented in terms of a group of people who has 

the same person and household demographics (e.g. age, gender, household size, and 

household income). On the demand side of ABM, the microsimulation involves two major 

steps (Guo and Bhat, 2007): (1) construction of a microdata set representing the 

characteristics of the decision agents of interest (called population synthesis), and (2) 

simulation of the decision agent’s behaviour of interest such as activity-travel patterns, based 

on utility-based or rule-based models. On the supply side, all activity-travel patterns of each 

agent are simultaneously assigned on the networks. 

Due to the limitation of budget and time, all characteristics of the whole agents (or all 

individual persons) in the study area can not be observed. Consequently, the methodology to 

synthesize the synthetic population from both aggregate dataset (e.g. complete census data) 
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and disaggregate dataset (e.g. a sample of households and individuals) was conducted by 

many research studies (e.g. Ye et al., 2009; Axhausen and Müller, 2011; Guo and Bhat, 2007; 

Beckman et al., 1996). For instance, the public-use microdata samples (PUMS) of U.S. 

consist of information on all socio-demographic variables of interest, but only a sample of 

households and individuals is available (called the reference sample). In contrast, the 

aggregate dataset comprises some socio-demographic variables of disaggregate data (called 

control variables) from the census block, which can represent a full aggregate dataset or a 

larger sampling proportion of PUMS data. This is exemplified by the case that the marginal 

distributions/totals of population categorized by age and gender at census-block level are 

known (e.g. census standard tape file 3A (see Census, 1992)), but the individual data 

(microdata) of age and gender is still unknown at this level.  

Typically, the marginal distribution of control variables is available at census block level, 

the joint distribution of these control variables is, however, still unknown. In addition, the area 

of PUMS (PUMA) is larger than the area of the census block and indeed usually contains 

many census blocks. Consequently, the basic population synthesis for this case study is to 

estimate the joint distribution of one or multi-dimensions of control variables. In the way, the 

marginal totals of selected control variables and the correlation structure observed in the 

disaggregate dataset are preserved. This procedure is generally carried out by using the 

iterative proportion fitting (IPF) technique. Drawing or copying households from the 

reference samples into the targeted traffic analysis zone is then conducted by Monte Carlo 

simulation (e.g. Guo and Bhat, 2007; Axhausen and Müller, 2011; Bowman, 2009). 

The information available for processing population synthesis, however, can vary from 

one country to another. For instance, the marginal distribution of control variables is not 

available at the desired geographical level (traffic analysis zone), but only for a larger area. 

This is exemplified by the resolution of census block in some countries containing many 

traffic analysis zones (e.g. Swiss federal statistical office, 2000; Thai national statistical office, 

2010). Consequently, the procedure to synthesize the population into a smaller area (traffic 

zone) is needed. According to the problem of population allocation, exogenous land use 

variables (e.g. number of buildings and average household size per living quarter type) are 

generally used to pre-estimate the population allocation at the traffic zone level. However, the 

estimated results can be uncertain, in particular, the case of inconsistent household size 

distribution by traffic zone. In addition, synthetic population is simulated from the household 

sample survey data. The estimated results can be biased due to such as low-sampling size and 

inaccurate household data (Bricka and Bhat, 2006). To deal with such problems, Cool et al. 

(2010) presented the meta-heuristic approach to calibrate synthetic population using OD trips. 

As the previous research that we focused on the calibration of model parameters in the 

activity-based model (Siripirote et al., 2013), in this study, the statistical framework for the 

synthetic population calibration from link counts is conducted. The maximum likelihood 

estimation problem based on link counts is defined in this paper. This model is solved by the 

proposed maximum-likelihood method. The remainder of the paper is organized as follows. 

Basic components of the network and activity choice dimensions are described in the 

following section. The formulation of the maximum-likelihood estimation problem is 

presented in the third section. Included also is the process to calibrate synthetic population. 

The numerical example is then conducted in the fourth section. Also included is the analysis 

of results. The proposed calibration method applied to a medium-sized network in Thailand is 

reported in the fifth section. Finally, conclusions are drawn in sixth section. 

 

 

2. NETWORK AND ACTIVITY CHOICE REPRESENTATION 
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For a traffic network ( ,N L) , N is the set of nodes and L is the set of links. Activity location 

lo is located in each traffic zone where Z  is the set of zone centroids and Lz is the set of links 

in traffic zone z ( Z N and Lz  L ). In addition, the activity location (lo) is assumed to be 

virtually located at the zone centroid which is one of the nodes in a network, representative of 

all real activity locations in the zone ( loZ ).    

As we consider on daily activity-travel participations, user i makes a plan to perform 

activity pattern y. Let yA denote the activity pattern consisting of an ordered set of the activities 

which are daily scheduled to be carried out:           

yA  
 
= 

1{ ,..., ,..., }
yQqa a a

  
for {1,..., }y Y

 
                   (2.1) 

where, 

Y    : the total daily activity patterns,  

qa     : an activity performed in sequence q of activity pattern y, q {1,..., }yQ , and 

yQ
 
  : the total number of activities included in activity pattern y. 

For instance, if the activity pattern (y=1) is Stay-at-home(H)-Working(W)-Stay-at-home(H), 

{H,W,H}1 A .  

Individuals can then select a trip chain which consists of an ordered set of activity 

location/mode/time of day. Given the list of activities in the specified activity pattern performed 

by individuals, yA , the trip chain h (the combined set of activity location/mode/time of the day 

performed by trip makers starting at origin zone o) is denoted as ,
o
y h  . This is expressed by: 

,
o
y hB  = 

1 1,2 1,, , ,

1,2 1,, ,

, 1

, 1

{( ,..., ,..., ), ( ,..., ,..., )

, ( ,..., ,..., )}

Q Q Qy h y h y h

Q Qy h y h

q q q

q q

mo mo molo lo lo

m m m








                   

(2.2) 

1 ,for {1,..., },   = ,   ,  {1,..., }y y hqh H lo o lo q Q  Z  

where,  

, 1q qmo  : travel mode from activity location qlo to 1qlo  . 

, 1q qm   : travel period of individuals traveling from qlo to 1qlo  . 

qlo     : activity location q where individuals perform an activity. 

,y hQ    : the total number of visits at activity locations of individuals who make trip chain h 

associated with activity pattern y. 

yH    : the total number of trip chains associated with activity pattern y. 

Note that a trip chain that begins and ends at the same activity location ( 1  = Qlo lo ) is called a 

tour. A tour of trip chain that begins at home is called home-based tour. In addition, for 

simple illustrations throughout the paper, individuals, who make trip chain h associated with 

activity pattern y originating from zone o, perform activity chain j. In other words, activity 

chain j is the combined decision of travelers on activity pattern y and trip chain h. 

 

 

3. ESTIMATION PROBLEM FORMULATION 
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3.1 Demand Side 

 

Consider ABM based on the utility-based approach, a demand function in this model is assumed 

to explicitly relate to exogenous variables via a N-dimensional parameter vector . Let Γ be 

the choice set of activity chains of travellers and p be the type of individuals having the same 

person/household demographic in synthetic population (e.g. same type of gender, career, 

family (with/without child), and household size/income)). In addition, type p synthetic 

population (simply called type p population) represents a group of simulated people including 

anyone belonging to type p. Given the probability that type p population in origin zone o 

selecting the activity chain j, ,Pr ( )o p
j α  for jΓ , the demand of activity chain j, ( )ju α , can be 

formulated as: 

,( ) N Pr ( )p o p
j o j

p

u  α α      jΓ                                       (3.1) 

where, 

N p
o  : the number of type p synthetic population in origin zone o. 

In general, ,Pr ( )o p
j α  is estimated by the choice logit model, in which the input data can 

be obtained from household and travel diary survey. For illustration of the method to calibrate 

synthetic population, choice set of activity chains (Γ ) and probability ,Pr ( )o p
j α  are assumed 

to be given for this study. The formulation of ,Pr ( )o p
j α  is described in section 4.1.1. 

If a stochastic phenomenon is considered, activity chain demand can also be expressed as follows: 

( )  u u α                            (3.2) 

where, 

u , ( )u : the true and expected activity chain demand, and 

  : the random error representing the unknown discrepancy between true demand u  

and expected demand ( )u α with zero mean and variance-covariance of demand u, 

( )E     . 

In addition, let OD pair g represent a trip (by specific mode (mo) and travel period (m)) 

from origin zone o to destination zone d. The OD demand matrix, t, can then be mapped by 

the activity chain demand matrix, u, as the following equation. 

  t δ u                               (3.3) 

where, 

 δ   : OD demand-activity chain demand proportion matrix, and  

OD demand pair g:  j
g g j

j

t u   g                                      (3.4a) 

where,  

j
g       : the number of OD pair g that contains in activity chain j.   

After putting the definition (3.2) into (3.3) and taking expectation, the expected OD 

demand, ( )t α , is obtained as follows : 

( ) ( ) t α δ u α                     (3.4b)    
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3.2 Supply Side 

 

To consider the stochastic supply side of the activity-based model, the basic characteristics of 

link flow and path flow can be described as follows:  

Let R g  be the non-empty path set of the OD pair g, and g
rf  be the traffic flow on 

path r, r R g , where the traffic flow can generally be obtained from traffic assignment (e.g. 

stochastic traffic assignment). In addition, let denote g
rp  as the proportion of OD pair g on 

path r. Following flow conservation’ rule, traffic flow can then, also be expressed by: 

g g
r r gf p t

                                                                        

(3.5) 

Let , 1r g
l  if path r of OD pair g uses link l , and 0 otherwise; and denote lv  as the traffic 

flow on link l . The link flow is then, the summation of traffic flows of all paths using the link: 

,

g

r g g
l l r

g r

v f


  
R  

 l

                                                           (3.6) 

By replacing g
rf from (3.5) to (3.6), the following can be obtained: 

,

Rg

r g g
l l r g

g r

v p t


                         (3.7) 

Let c  denote the link flow measurement vector. Since the error on link counts can be 

represented as the random variation in travel demand and route choices over time, link 

counts, c , are assumed to be observations of the random variables as follows: 

ˆ ( )B     c v t α                       (3.8) 

where,  

B     : link-OD proportion matrix (i.e. g
lb = ,

g

r g g
l r

r

p



R

; g
lb = [ , ]B l g ), and 

      : the random error with zero mean ( ( )E  = 0) and variance-covariance ( )E  =  . 

 
3.3 Population Synthesis 
 
The objective of population synthesis is to synthesize the whole agents from reference samples 

reproducing marginal distributions/totals of demographical variables (usually from census data) 

and joint distributions of these variables in the reference samples from household survey 

(Bowman, 2009). The iterative proportional fitting method (IPF), initially developed by Deming 

and Stephan (1940), is generally used to calculate the weights of each population type. The 

example of marginal totals and joint distributions in two-way tables is exemplified in Table 1. 

Regarding the minimum discrimination information theorem (Ireland and Kullback, 1968) 

based on the IPF method, given marginal totals of attributes v1 and v2 (Nv1 and Nv2), the number 

of synthetic populations with attributes v1 and v2, 1
2nv

v , after k iterations can be estimated as: 

1
2nv

v    = ( 1, 2) 1 2

1 1

( ) ( )
k k

k k
v v v v

k k

w w
 

  

    = ( 1, 2) 1 2( ) ( )v v v vw w      

      = ( 1, 2) ( 1, 2)v v v vw                      (3.9) 

where, 0
1 1vw   for k =0; 1

1vw = 1Nv / ( 1, 2 )

2

v v

v

 



 for k  =1 ; 1
k
vw

= 1Nv / 1N̂k

v


 for k  >1, 
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0
2 1vw  for k =0 ; 2

k
vw

= 2Nv / 2N̂k

v


 for k  ≥1, 

( 1, 2)v v     : the number of reference samples with attributes v1and v2, 

1N̂k
v


, 2N̂k

v


 : the estimated marginal totals of attributes v1and v2 at iterative k’, i.e., 

      

1vw , 2vw     : the weight of attributes v1 and v2, respectively (after k iterations), and 

( 1, 2)v vw     : the final weight of attributes v1 and v2, i.e. ( 1, 2)v vw = 1 2v vw w . 

As Mosteller (1968) proofed that, based on the IPF method, a correlation structure of the 

synthetic population (e.g. 1
2nv

v ) is similar to that of observations in the reference sample. 

Regarding to the IPF example in Table 1, the correlation of synthetic population can be measured 

by cross-product ratio, i.e., 1 1 1 2 1 1 1 2
2 1 2 2 2 2 2 1n n / n nv v v v

v v v v
   
     . After processing three iterations in the IPF 

process, the cross-product ratio of both synthetic population and the sample is equal to 0.823. 

 

Table 1. Subtables for IPF example with two control variables (v1 and v2) 

  Reference samples ( (v1,v2)) 

 

v2 = 1 v2 = 2 Total 

v1 = 1 47 25 72 

v1 = 2 80 35 115 

Total 127 60 187 

 

 

To calculate the marginal distributions of demographical control types normally obtaining 

from census data, let N p be the number of population with demographical control type p , p  set 

of person control types, P, and N z be the number of population in traffic zone z, z  Z. Note that 

types of person control are generally consisted of some demographical variables available from 

census data, but not all variables in the reference sample (e.g. only gender and household size, 

Table 5) are controlled. If N p and N z follow multinomial distributions, it can be expressed as: 

Person control:       N p  Multinomial  N ,Prpop p
                          (3.10) 

Zonal control:        Nz  Multinomial  N ,Prpop z                           (3.11) 

Or, these control variables can also be presented by the fractions (marginal distributions) in 

each control level (person control and zonal control) as follows. 

n
Pr

n
P

p

p

p

p








                                                    (3.12) 

where, 

Npop  : the total number of population, 

Prp  : the success probability of selecting population with person control type p , 

n p    : the expected number of population with person control type p , and 

  Marginal totals 

         v2 = 1 v2 = 2 Total( Nv1) 

v1 = 1 ? ? 1,000 

v1 = 2 ? ? 2,500 

 Total( Nv2) 2,000 1,500 3,500 

  Final weights (after 3 iterations) 

 

v2 = 1 v2 = 2 Total 

v1 = 1 11.43 18.52 29.94 

v1 = 2 18.29 29.63 47.92 

Total 29.71 48.15 77.86 

  Marginal distribution 

         v2 = 1 v2 = 2 Total 

v1 = 1 ? ? 0.286 

v1 = 2 ? ? 0.714 

Total 0.571 0.426 1.000 

= 

x 
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n
Pr

n

z
z

z

z








Z

                                 (3.13) 

where, 

Prz   : the success probability of selecting population in traffic zone z, and 

n z    : the expected number of population in traffic zone z. 

In addition, the number of control type p population, n p , is generally available from the 

census block level including the marginal totals of population of each control types (e.g. 

gender and household size in the numerical example). However, in this study, the population 

data ( n z ) is assumed to be unknown at the traffic zone level (sub area of census block). To 

deal with this problem, the number of population at the traffic zone level can be pre-estimated 

by using land use data. For instance, the type of living quarters and related household size can 

be used to estimate the expected number of population at traffic zone as follows. 

,n n

z

z z s z s

s C

 


                        (3.14) 

where, 

,n s z  : the number of building of living quarters s in traffic zone z,  

z   : the bias term of estimated number of population in traffic zone z, and 

 s    : the average household size of living quarters s. 

Note that if   is assumed to be constant for every traffic zones, all bias terms in (3.14) can 

then be cancelled. Consequently, the probability of drawing person in traffic zone z, Prz , can 

be formulated as follows. 

,

,

Z  

n
n

Pr
n n

z

z

s z s

s Cz
z

z s z s

z z s C








   

   





  
  for , Zz z           (3.15) 

where, 

Cz   : the set of living quarter types in traffic zone z. 

According to the multinomial properties, the split fractions of population in control type p ,  py , 

and traffic zone z, zy , also follow multinomial distribution as shown in (3.16) and (3.17). 

py Multinomial  1,Prp                                              (3.16) 

zy Multinomial  1,Prz                                              (3.17) 

where the variances of split fraction ( zy and py ) can be expressed by: 

 
 2 Pr 1 Pr

N

z zy
z

pop




                    (3.18) 

 
 2 Pr 1 Pr

N

p py
p

pop




                                                 (3.19) 

Note that for a large population size, these split fractions can be assumed to follow the normal 

distribution, according to the central limit theorem.  
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3.4 Maximum-likelihood Estimation Problem (MLP) 

 

The optimization problem of generating the weight/expansion factor, w, for any synthetic 

population located in the traffic zone z simultaneously calibrating with link count c can be 

considered as follows: 

Min:
1 , 2 3 ( ) =  ( N , )  + ( Pr ) +  ( )s z s pZ w Z w Z w Z w c

                       

(3.20) 

subject to: w 1,  w 1p z   for  ,p z            (3.21)  

 

2

,1 2
:   

n
Pr

N
Marginal zonal control ( N , ) 0.5 const.

z
z

pop

s z s
yz
z

Z w 


 
 
 
 



                 (3.22) 

where,  ( , )n ( ( ) )p
z p z p p z

p p

w w                           (3.22a) 

 

2

2 2

n
Pr

N
Marginal person control:  ( Pr ) 0.5 const.

p
p

pop

p
yp
p

Z w


 
 
 
 



                 (3.23) 

where,  ( , )n ( ( ) )p
p p z p p z

z p p

w w                                (3.23a) 

For a simple illustration of the calibration method, if errors in traffic counts are assumed 

to have a joint multi variate normal (MVN) distribution with zero means and ignoring the 

covariance terms in dispersion matrix,  , (e.g. Cascetta and Russo, 1997). It follows that: 

2

,

,

3 2

ˆn Pr ( )

Link count control :  ( ) 0.5 const.

a p z p j
l z j l

z p j

a l c

c p

Z w c


 
   

  

α

             (3.24)  

where,  n p
z ( , ) ( )p

p z p p z

p

w w  ,                                          (3.24a) 

the link-activity chain proportion, ,

,

ˆ j j r g g
l g l r

r g

p p  ; N n npop p z

p z

   . 

p : the type of individuals having the same personal and household demographic, 
p
p    : indicator variable, p

p = 1: type p population is in control type p , and p
p = 0, otherwise.  

n p  : the expected number of population belonging to type p, 

N pop  : total number of population of all population types, 

n z   : the expected number of population in traffic zone z, 

n p
z   : the expected number of population belonging to type p in traffic zone z, 

a
lc  : link flow in link l at day a , 

pw  : weight of population in control type p ,  

wz : weight of any person living in traffic zone z, and  

( , )p z  : the number of type p samples living in traffic zone z (in the reference sample). 
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To solve problem (3.20) associated with the constraint (3.21), the Lagrangian is formulated as 

follows: 

,1 2 3 1 2( ) =  ( N , )  + ( Pr ) +  ( ) + ( 1)+ ( 1)s z s p p zL w Z w Z w Z w c w w     

  

(3.25) 

where, 1 2,  : the Lagrange multipliers. 

As the matrices of variance 2)( y
z , 2)( y

p , and 2
c are positive-definite, the problem (3.25) is 

convex and the minimum has unique solution of final weight wk (i.e. k p zw w w ) as follows: 

2
1( )

 0
 k k

Z w

w w





, 

2
2 ( )

 0
 k k

Z w

w w





,    

2
3( )

 0,   
 k k

Z w
k

w w


 


                     (3.26) 

and,
2

1( )
 0

 k k

Z w

w w 





, 

2
2 ( )

 0
 k k

Z w

w w 





, 

2
3( )

 0,   
 k k

Z w
k k

w w 


  


            (3.27) 

In this study, the sequential quadratic programming in MATLAB software was adopted 

for solving this optimization problem. Then, after calibrating the final weights (wk) by solving 

the optimization problem (3.25), the number of simulated type p population in particular 

traffic zone z, N̂ p
z , can be obtained from multiplying the final weights by the reference 

sample of the same demographic and traffic zone. This is expressed by:      

( , , )N̂ ( )p p
z i p z p p z

i p

w w                         (3.28) 

where, 

( , , )i p z : the number of person ID i (in reference sample) with demographic p in traffic zone z. 

It is worth noting that, to avoid the common problem that the estimated marginal totals 

of demographic p, N̂ p
z , create the zero entry due to no samples of this demographic from the 

reference sample record (e.g. Beckman et al., 1996; Guo and Bhat, 2007), at least one sample 

of such a demographic type should be collected by the household sample survey.     

 

 

4. NUMERICAL EXAMPLE 

 

4.1 Test Activity-based Model and Network 

 

A random utility maximization-based approach was used to construct an activity-based model 

(e.g. Bradley et al., 2010; Bifulco et al., 2010). The choice dimensions for this application are: 

 activity pattern choice; 

 tour choices (trip chain model), consisting of: 

(a) first tour: 

(i)  time-of-day choice; 

(ii) destination and mode choice 

(b) second tour (optional) 

(i)  time-of-day choice; 

(ii) destination and mode choice. 

Note that time-of-day choice is a combined choice of start tour and end tour travel period.   
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4.1.1 Model specification 

In this study, the numerical example is considered as illustrative, and the model was applied to 

a single category: workers associated with travel pattern of home-based tour. The choice 

alternation of out-of-home activities includes work (W) and maintenance (O) purposes. In 

addition, at-home activities include stay-at-home (H) purposes. 

Daily activity pattern choice model (Ap): This model reproduces the choice of daily activity 

pattern, y, for each origin zone o. In this numerical example, four different activity patterns 

(i.e. {1,2,3,4}y ) are considered: H-W-H ( 1y  ), H-O-W-H ( 2y  ), H-W-O-H ( 3y  ), and 

H-W-H-O-H, (y = 4). 

First tour time-of-day choice model (Ftod), reproduces the choice of the time-of-day t1 in the 

first tour (with t1 ∈ {1, 2, 3}, see Table 2). 

Second tour time-of-day choice model (Stod), reproduces the choice of the time-of-day t2 in the 

second tour (only for H-W-H-O-H). The choice set of this second tour dimension is 

considered as a function of the time constraints of the first tour (if the first tour has not ended, 

the second tour cannot start, see Table 2). 

 

Table 2. Time-of-day alternatives (first and second tour) 

t1 

First tour   

t2 

Second tour   

Start End Start End 

1 AM
a
 MD

a
 1 PM

a
 PM 

2 AM PM 2 PM OP 

3 AM OP
a
 3 OP OP 

 
a
 AM = 7:00-9:00, MD = 12:30-14:30, PM = 17:30-19:30, and OP = 20:00 – 22:00.  

 

Destination and mode choice model for the first tour (Fdm) and second tour (Sdm), reproduces 

the choice of the destination zone lo for work purpose in the first tour and for maintenance 

purpose in the second tour (with lo ∈ {1: for 1
st
 nearest zone, 2: for 2

nd
 nearest zone, 3: for 3

rd
 

nearest zone to origin (but not including it)}) and travel mode mo (with mo ∈ {Car, Bus}). 

Consequently, the combination of mode and destination for the first tour (b1) and the second 

tour (b2) can be up to 6 alternatives. Note that the destination for maintenance purposes 

before/after work in activity pattern (H-O-W-H and H-W-O-H) is assumed to be located at the 

same work zone for a simple illustrative purpose. Also, due to spatial independency of the 

destination for performing work in first tour and maintenance in second tour, the MNL models 

are used to generate the trip maker’s decisions on destination and mode in first and second tour. 

The mathematical formulation of the probability that type p population originating from zone 

o performs activity chain j is shown as follows: 

,
2 1 1 2 2 1 1 1 1 1Pr ( ) Pr( , , , )Pr( , , )Pr( , )Pr( )Pr( )o p

j b y t b t t y t b b y t t y yα

            

(4.1) 

where the probability of selecting an activity pattern y: 

Pr( )y
exp( )

exp( )

y y

y y

y

V V

V V 







; 1

1 11

1

,

1
ln exp[( ) ]

t
y t y tt

t

V V V 


 



   1 6 6 7 7 8 8; Asc + X + X + XyV    (4.2) 

, the probability of selecting time-of-day t1 in the first tour:  

1Pr( )t y  1 1

1 1

1

,

,

exp( )
 

exp( )

t y t

t y t

t

V V

V V 







; 2

1 22

2

,

1
ln exp[( ) ]

t
y t tt

t

V V 


 



   1 2 11 11 12 12;   Asc + X + XtV   (4.3) 
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, the probability of selecting destination/mode choice model b1 in the first tour: 

1 1Pr( , )b y t 1

1

1

exp( )
 

exp( )

b

b

b

V

V 






      

1 3 14 14 15 15 16 16;   Asc + X + X + XbV   

              

(4.4) 

, the probability of selecting time-of-day t2 in the second tour:  

2 1 1Pr( , , )t y t b 2

2

2

exp( )
 

exp( )

t

t

t

V

V 






    

;                                               (4.5) 

, the probability of selecting destination/mode choice model b2 in the second tour: 

2 1 1 2Pr( , , , )b y t b t 2

2

2

exp( )
 

exp( )

b

b

b

V

V 






2 5 14 14 23 23 24 24;   Asc + X + X + XbV   

              

(4.6)

 , and 1 2,
t t  : scaled parameters at time of day: level t1 and t2 respectively. 

The test network has 5 traffic zones (including activity H, W, and O in each zone), 38 

links, and 13 nodes (see Figure 1). There are 2 available modes in the network (car and bus). 

Feasible paths travelled by both car and bus are assumed to be generated by the k-shortest path 

method (Yen, 1971). In accordance with method to assign travel demand on the test network, a 

logit stochastic user equilibrium (SUE) was adopted in this study. Given route choice 

parameters, true traffic flows were then obtained by assigning the travel demand derived from 

the synthetic population associated with true model parameters (see Table 3) to the test network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Test network 

 

4.2 Evaluation Method and Test Case 

 

To set the test cases, true population allocation in traffic zone (Prz) is given (column 10 in Table 

4). The initial population allocation (Prz) set to deviate from the true population allocation 

representing the biases in the population synthesis is calculated by using exogenous land use data 

(column 9 in Table 4). In addition, true marginal totals ( n p ) and marginal distributions of person 

control variables ( Prp ) categorized by 6 types are given (Table 5). Since the population size is 

high, the variances (z)
2
 and ( p )

2
 can be calculated by using true values of Prz

 
and Prp described 

in (3.18) and (3.19). 

Regarding the simulations of roadside observations, a Monte-Carlo method was used to 

draw link flow observations from the activity-based models described in section 4.1, given 

 1 

 2 

 3  4 

 5 

8 

12 

Zone centroid/activity  

location of zone 1 
 

Link 1 1 

Node 6 
 

6 

1 
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true parameters true (Table 3) and true population data. Link counts, c, are then drawn from 

a normal variate with a mean, v̂ , equal to ( )B  t α  in (3.8) and a variance, 2
c , assumed to be 

a function of mean,
2

vc ˆ( ) v , where vc is the coefficient of link count variations. In addition, 

to representing the variations in an observation, link counts are randomly drawn 10 times 

(days). This describes a variation from multiday observations. 

To evaluate the performance of calibration method, the true final weights (
truew ) are 

calculated by solving the problems (3.20) to (3.23) associated with true population allocation 

(Prz) in the traffic zone (column 10 in Table 4). In the case of no calibration with link counts, 

the initial final weights (
0w ) in population synthesis process are obtained by solving the 

problems (3.20) to (3.23) associated with the initial population allocation in the traffic zone 

(column 9 in Table 4). To calibrate the synthetic population from link counts, the calibrated 

final weights ( ŵ ) are obtained by solving the problems (3.20) to (3.24) associated with the 

initial population allocation in the traffic zone and simulated link counts. The reference 

sample (see Table 6) is then expanded by multiplying the final weight estimated from the 

previous step to reproduce the synthetic population data as described in (3.28).  

In order to see how the proposed method based on link flow information can improve 

the population synthesis efficiency as mentioned, the final weights were calculated, which is 

summarized as the following simulation scenarios: 

(i) Based case: no calibration. This implies solving the problem (3.20)–(3.23). 

(ii) Calibrated by link counts. This implies solving the problem (3.20)–(3.23) associated 

with the link count control (3.24). 

In general, the efficiency of model calibration depends on quantity (number of links to 

be observed) of observations. The number of links to be counted in scenario (ii) is typically set 

to be 40%. However, lack of observation stations can cause low efficiency in the population 

calibration results. Consequently, the sensitivity analysis by various settings of numbers of 

link counts (i.e. approximately 40%, 25%, and 15% of all links to be observed) with fixed 

coefficient of link count variations, (i.e. vc = 0.01) was also adopted for this study. 

Let 
0

Λ be the vector of the initial value of the final weight of scenario (i), Λ̂  be the 

vector of the calibrated value of final weight of scenario (ii), and
true

Λ be the vector of the true 

final weight. The statistical performance of the estimation of the final weight, w , can be 

measured by the percentage reduction of the mean square error from the initial value of the 

final weight,
0w , in vector 

0
Λ and defined as follows (Cascetta and Russo, 1997). 

0 0MSE%( ) [MSE( ) MSE( )] / MSE( ) 100%   k k k kw w w w           (4.7) 

,and MMSE = 
MSE%( )

   k

k

w

K
         (4.8) 

where, 

N        : total number of trials of a dataset ( 0
Λ and Λ̂ ), 

K        : number of final weights in vectorΛ , and 
0MSE%( )kw : percentage reduction of the mean square error of final weight k

th
 in vector .Λ  

0 0 2

,

1

MSE( ) ( ) /
N

true

k n k k

n

w w w N


                   (4.9) 

2

,

1

ˆMSE( ) ( ) /
N

true

k n k k

n

w w w N


                      (4.10) 

where,  
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true

kw  : final weight k
th
 in true vector true

Λ , 

0MSE( )jw : mean square error of initial value of weight k
th

 in 0
Λ from N datasets; 0

,n kw is initial 

value of final weight k
th

 in 0
Λ of trial n

th
, and 

MSE( )kw : mean square error of calibrated value of final weight k
th

 in Λ̂  from N datasets; 

,
ˆ

n kw is calibrated value of final weight k
th
 in Λ̂ of trial n

th
. 

 

Table 3. The setting of activity-based model parameters () 

No.  Model  Variable name  Type of variable  Coefficient()  

1 

Ap 

H-O-W-H specific const. (Asc1 of H-W-H = 0)  Asc1 -4.42 

2 H-W-O-H specific const.  Asc1 -3.12 

3 H-W-H-O-H specific const.  Asc1 -0.84 

4 Scaled parameter (
t1

)  
t1

 1.28 

5 Scaled parameter (
t2

)  
t2

 1.00 

6 Dummy
a
: Female + H-O-W-H or H-W-O-H  X6 = 1 or 0 1.56 

7 Dummy: Family with at least one child+ H-O-W-H  X7 = 1 or 0 3.16 

8 Dummy: Family without child + H-W-O-H  X8 = 1 or 0 0.70 

9 

Ftod 

AM to PM specific const. (Asc2 of AM-MD = 0)  Asc2 -0.54 

10 AM to OP specific const.  Asc2 -2.24 

11 Dummy: Full time worker + tour time: AM to MD  X11 = 1 or 0 -4.00 

12 Dummy: Part-time worker + tour time: AM to OP  X12 = 1 or 0 1.92 

13 

Fdm 

Bus specific const. (Asc3 of car = 0)  Asc3 0.24 

14 Generalised travel time  X14 -0.08 

15 Number of employments (log scale)  X15 0.80 

16 Dummy: High household income + car mode  X16 = 1 or 0 5.36 

17 

Stod 

PM to OP specific const. (Asc4 of PM-PM = 0)  Asc4 -1.06 

18 OP to OP specific const.  Asc4 -2.82 

19 Dummy: Full time worker + tour time: PM to PM  X19 = 1 or 0 -4.28 

20 Dummy: Part-time worker + tour time: OP to OP  X20 = 1 or 0 2.70 

21 

Sdm 

Bus specific const. (Asc5 of car = 0)  Asc5 -0.68 

22 Generalised travel time  X22 -0.98 

23 Number of retails (log scale)  X23 0.84 

24 Dummy: High household income + car mode  X24 = 1 or 0 6.74 
a Dummy variable = 1 if specific demographic/choice is selected, 0 otherwise. 
 

 

Table 4. Initial estimation of population by traffic zone (Marginal zonal control) 

Zone 

living quarters 

Total 
Initial 

Prz 

True 

Prz 

Detached house Town house Row house 

No. of 

building 

Average 

household 

size 

No. of 

building 

Average 

household 

size 

No. of 

building 

Average 

household 

size 

(1) (2) (3) (4) (5) (6) (7) (8)
a
  (9) (10) 

1 61 2.00 55 3.50 85 4.50 699 0.200 0.158 

2 55 2.00 52 3.50 92 4.50 703 0.201 0.159 

3 88 2.00 31 3.50 85 4.50 668 0.191 0.152 

4 52 2.00 61 3.50 88 4.50 716 0.204 0.266 

5 34 2.00 122 3.50 49 4.50 714 0.204 0.265 

Total 290 
 

321 
 

399 
 

3,500 1.000 1.000 
a
 (8) = (2)*(3)+(4)*(5)+(6)*(7).  
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Table 5. The population by types (Marginal person control) 

Index 

Person control type 

Total Household size = 1 Household size = 2 Household size = 3 

Male Female Male Female Male Female 

Number of 

population 
525 525 700 700 525 525 3,500 

True Prp  0.15 0.15 0.20 0.20 0.15 0.15 1.00 

 

Table 6. The example of personal records from the reference sample 

Person ID Zone 
 Household 

size
c
 

Gender
c 

Family with childs 
Household 

income 
Career 

1 1  3 Male Yes High FT
a
 

2 1  1 Female Yes Low PT
b
 

3 1  3 Male Yes Low FT 

4 1  2 Female No High FT 

5 1  2 Male No High FT 
a
 FT: Full-time worker. 

b
 PT: Part-time worker. 

c
 two of five demographical variables (gender and household size) are assumed to be the control variables. 

 

4.3 Analysis of the Results 
 

Two simulation scenarios described above in the numerical test were conducted. The estimation 

of the final weights calibrated by link counts is generally more satisfactory than the estimation 

results in scenario (i). The numerical details of the calibrated results in scenario (ii), reported in 

Table 7 and Table 8, show the smaller level of error than the estimated results from the case 

without calibration in scenario (i). This error is measured by the mean square error (MSE) as 

described in section 4.2. To make a comparison of the error between scenarios (i) and (ii), the 

statistical performance of the calibration with link counts can also be interpreted by the high 

percentage error reduction shown in Table 9 (MSE% is close to 100%). After assigning the final 

weights to reproduce the synthetic population (3.28), the calibrated results are more closely 

related to the true population than the initial population (Figure 2). 

Effect of the number of observations 

As with the quantity of observation experiment, the effects of the decrease in the number of 

links to be observed, covering from 40% to 15% of all links in the test network, were also 

studied. The results from Table 10 show that, the lower the number of links to counts, the 

higher the estimation error (measured by MMSE between scenario (i) and (ii)) obtained. 

However, with 15% of links to be observed, the mean error reduction from the initial values 

(MMSE) is still higher than 80%. In other words, the calibrated model error is still 

significantly smaller than the model error without calibration, under a case that the sufficient 

number of links is observed.  

Effect of the variation in observations 

In general, it was observed (see Table 11) that the coefficient of variation, vc, exert opposite 

influences on the direct indicators: the mean percentage reduction of the mean square error 

(MMSE). Increasing the coefficient of variation, vc, values, and hence deviations of measured 

and true flows, cause a decrease in the estimation precision.  
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Table 7. The estimation results of final weights after 5 trials (N = 5) 

Person 

control type 
Household size

a
 Gender 

Traffic zone 

1 2 3 4 5 

 Initial final weight (Scenario (i): without link count calibration) 

1 1 Male 4.460 4.428 4.198 4.411 4.416 

2 1 Female 5.587 5.548 5.260 5.526 5.533 

3 2 Male 5.302 5.265 4.991 5.244 5.251 

4 2 Female 5.069 5.034 4.772 5.014 5.020 

5 3 Male 4.577 4.545 4.309 4.527 4.533 

6 3 Female 5.530 5.491 5.206 5.470 5.476 

True final weight 

1 1 Male 3.528 3.533 3.343 5.899 5.880 

2 1 Female 4.413 4.419 4.181 7.379 7.354 

3 2 Male 4.221 4.227 3.999 7.058 7.035 

4 2 Female 3.993 3.998 3.783 6.676 6.654 

5 3 Male 3.619 3.624 3.429 6.052 6.032 

6 3 Female 4.143 4.149 3.926 6.928 6.905 

Calibrated final weight (Scenario (ii): with link count calibration) 

1 1 Male 3.514 3.515 3.326 5.874 5.851 

2 1 Female 4.406 4.407 4.170 7.365 7.336 

3 2 Male 4.249 4.250 4.021 7.102 7.074 

4 2 Female 4.038 4.039 3.822 6.749 6.723 

5 3 Male 3.581 3.581 3.389 5.985 5.961 

6 3 Female 4.159 4.160 3.936 6.951 6.924 

 

Table 8. The statistical performance (measured by MSE) after 5 trials (N = 5) 

Person 

control type 
Household size

a
 Gender 

Traffic zone 

1 2 3 4 5 

 MSE of initial final weight (Scenario (i): without link count calibration) 

1 1 Male 0.868 0.801 0.732 2.216 2.142 

2 1 Female 1.379 1.274 1.163 3.434 3.318 

3 2 Male 1.169 1.077 0.984 3.291 3.183 

4 2 Female 1.159 1.072 0.979 2.764 2.670 

5 3 Male 0.918 0.848 0.774 2.324 2.246 

6 3 Female 1.923 1.801 1.639 2.127 2.041 

MSE of calibrated final weight (Scenario (ii): with link count calibration) 

1 1 Male 0.026 0.029 0.034 0.081 0.088 

2 1 Female 0.009 0.011 0.015 0.029 0.035 

3 2 Male 0.158 0.150 0.112 0.421 0.394 

4 2 Female 0.012 0.010 0.005 0.027 0.024 

5 3 Male 0.059 0.063 0.068 0.175 0.186 

6 3 Female 0.011 0.012 0.015 0.036 0.036 
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Table 9. The statistical performance (measured by MSE%) after 5 trials (N = 5) 

Person 

control type 
Household size Gender 

Traffic zone 

1 2 3 4 5 

1 1 Male 99.7 99.6 99.6 99.7 99.6 

2 1 Female 99.9 99.9 99.9 99.9 99.9 

3 2 Male 99.3 99.3 99.3 99.3 99.3 

4 2 Female 99.5 99.6 99.6 99.5 99.6 

5 3 Male 98.8 98.5 98.5 98.6 98.3 

6 3 Female 98.8 98.8 98.8 97.1 97.2 

 

 
Figure 2. The comparison of true population and calibrated population by traffic zone 

 

 

Table 10. Results of the various settings
 
of number of observations 

Number of links observed  =  40% 25% 15% 

MMSE. 99.2 95.5 83.5 

 

Table 11. Results of the various settings of the variation in observations 

Coefficient of link count variations, vc,  =   0.005 0.01 0.10 0.20 0.40 

MMSE. 99.9 99.2 60.4 33.4 12.2 

 

 

5. AN APPLICATION TO THE MEDIUM-SIZED CITY 
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Phisanulok city located in northern part of Thailand has 78 traffic zones, 846 links, and 329 

nodes (Figure 3). The population in this city is approximately 200,000. 10% of links is 

assumed to be counted (by four travel periods (AM, MD, PM, and OP period)) and used to 

calibrate synthetic population. Given route choice proportions, these link counts are simulated 

from demand model (3.4b) derived from given true population data and true activity-based 

model (ABM) parameters. In this test, the true ABM parameters are assumed to be equal to 

the estimated ABM parameters obtaining from another ABM parameter estimation problem 

based on household and travel sample survey (HTS) data in the previous study (Siripirote et 

al., 2012). In addition, the choice set of activity patterns is also derived from HTS data. The 

study area includes two districts (i.e. CBD district: zone 1-35 and sub-urban district: zone 

36-78). Based on the complete census data in this city (Thai national statistical office, 2010), 

the population can be categorized by 18 population types of gender and age (see Table 12). 

The population of each person control type obtained from the complete census data is 

presented in Figure 4. The reference sample, which is approximately 3% of the total 

population, was collected from household and travel sample survey as mentioned. The initial 

population allocation was pre-estimated by using the land use data as illustrated in the 

previous numerical example. The land use data in this city includes the number of building 

categorized by 8 building types such as detached house, town house, and row house. The 

average household size per building type is obtained from the census data (Thai national 

statistical office, 2010). 

To consider the performance of the proposed model calibration, Figure 4 shows that the 

estimation of synthetic population calibrated by link flows (calibrated population) is generally 

closer to the true population than synthetic population without calibration (initial population). 

Figure 5 also shows that, after assigning the synthetic population to the network, the link flow 

estimation error with model calibration (measured by root mean square error (RMSE)) is 

significantly smaller than that of link flows without calibration. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The traffic network representation of Phitsanulok city (Thailand) 

 

 

Table 12. The population types 
Population 

type 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Gender
a 

M F M F M F M F M F M F M F M F M F 

Age (Yrs.) 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 ≥80 
a
 Gender: M=male and F=female. 

CBD boundary 
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Figure 4. The comparison of true population and calibrated synthetic population 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) With link count calibration 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Without link count calibration 

 

Figure 5. The comparison of true and calibrated link flows 

 

 
6. CONCLUSIONS 

RMSE = 48.1 

RMSE = 270.0 

R
2
 = 0.9916 

R
2
 = 0.9997 
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A statistical method for calibrating a synthetic population from link counts on the basis of the 

aggregate dataset only available in the person control level was presented in this paper. 

Approaches based on the maximum likelihood estimation method were examined and the 

statistical performances of this method were evaluated on a test network with various 

numbers of observations and medium-sized network application. 

The calibration results are, in general satisfactory, showing the capability of the 

proposed method to significantly reduce a bias in synthetic population estimated from 

household sample surveys (the reference sample) and land use data (population allocation into 

traffic zone). Based on the synthetic datasets used in the test network, low numbers of 

observation stations and high link count variations can reduce the performance of the 

proposed calibration method. However, the calibrated final weights from link flows, with a 

sufficient number of links to be observed, have significantly less errors than the model 

without calibration. Also, the accuracy of model calibrations depends on link counting 

locations, the future research may find an optimal link counting location (e.g. Siripirote et al., 

2013) giving the reliable roadside observation data to reproduce the good calibration results. 

Another future research may consider to calibrate a synthetic population associated with the 

combined aggregate datasets of both person and household control levels.  
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