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Abstract: Considerable research has been carried out to construct statistical and artificial 

intelligence based models to predict short-time crash probability taking basic traffic flow 

variables and/or their descriptive statistics and mathematical transformations. However, Little 

has been done to reveal whether and how the fundamental relationships of traffic flow 

theories differ for pre-crash and normal traffic conditions. This study revisits four classical 

two-phase traffic flow theories (Greenshields, Greenberg, Underwood and Bell-shaped 

models) and two methods of the three-phase traffic flow theory (detector based and 

correlation based) for pre-crash and normal traffic conditions and identifies their variations. 

The models developed with normal traffic data had better fit than those constructed with 

pre-crash data. The findings identify relatively high-velocity high-density traffic having 

association with pre-crash data both for two-phase and three-phase traffic flow theories. The 

hypothesis tests for the two-phase traffic flow theories affirm significant differences within 

the pre-crash and normal traffic condition data. 

Keywords: two-phase traffic flow theory; three-phase traffic flow theory; pre-crash; normal 

traffic condition; real-time traffic data. 

1. INTRODUCTION

Traffic flow theories are indispensable parts of the foundation of traffic science building the 

backbone of transportation engineering. They have various applications which represent a 

system in which many vehicles are interacting with each other (Velasco, 2012). Therefore, a 

basic distinction is made between microscopic and macroscopic models and their variables. 

Macroscopic model characterizes the traffic stream as a whole, and explains how the behavior 

of its parameters (speed, flow and density) changes with respect to one another. Microscopic 

model considers each of the individual vehicles in road network and how they interact with 

each other. These theories are inevitable for the fundamental characteristics of roadways. 

Around 80 years ago, the first macroscopic traffic flow theory was proposed by Greenshields 

et al. (1934) assuming a linear relationship between speed and density. Greenberg (1959) 

anticipated the same relationship to be simple logarithmic though not performing well in 

predicting speed at low density. Underwood (1961) assumed an exponential relationship but 

had reservations to be used under high density traffic conditions. Drake et al. (1967) relate 
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traffic flow model with bell-shaped normally distribution curve. Since then, many more 

complex models have followed. However, these four models are still widely used by 

researchers and practitioners. Rehborn et al. (2011) used four methods- detector based, 

correlation, flow-density and graphical method- for identifying the wide moving jam velocity 

of traffic flow in three-phase traffic flow theory. Two-phase classical theories fail to explain 

the phase transitions and the jam phases in actual traffic. Kerner’s three phase traffic flow 

theory identifies these drawbacks and eliminates them (Kerner, 2004 and 2009b). Following 

empirical observations, it divides traffic flow into three distinct phases – free flow, 

synchronized flow and wide moving jam. The free flow phase occurs when a driver can drive 

at any speed he/she feels comfortable, considering speed limit and external factors like 

weather, number of passengers, type of vehicle, engine capacity, etc. Vehicle speed lower than 

the speed of the slowest vehicle in free flow state indicates the congested traffic. A wide 

moving jam evolves from bottle necks and maintains the mean velocity of the downstream 

jam front while moving upstream, even through any other traffic state or a freeway bottleneck 

(Rehborn et al., 2011). Synchronized flow does not exhibit the property of wide moving jam 

and is often fixed at the bottleneck (Rehborn et al., 2011). Practical online applications 

ASDA/FOTO are developed based upon these observations, in order to track and identify the 

different jam phases of a traffic flow theory (Kerner, 1999a, 2004 and 2009b; Kerner and 

Rehborn, 1998; Kerner et al., 1998, 1999, 2004). Rehborn et al. (2011) evaluated universality 

of Kerner’s theories and confirmed that the downstream jam velocity for a wide moving jam 

remains within the range of 10 km/h to 18 km/h. 

Apart from being essential to the traffic flow theories, the basic traffic flow variables – speed, 

flow and density, are associated with many applications in traffic engineering, such as in road 

safety. Researchers are investigating the possibility to involve traffic flow variables for 

predicting road crashes in real time known as real-time crash prediction models. Some 

combinations of speed, flow and density can result in traffic conditions causing discomfort to 

drivers leading to mistakes that may result in as crashes (Hossain and Muramchi, 2011). In the 

developed world, a large number of access controlled roads such as freeways and 

expressways, equipped with substantial number of sensors and cameras, are used for yielding 

data of traffic flow variables in real-time that can serve as input to such models (Klein et al., 

2006). 

The research development in real-time crash prediction has mostly focused on distinguishing 

pre-crash data from normal traffic data through various kinds of prediction models (Lee et al., 

2002; Lee and Abdel-Aty, 2008; Abdel-Aty and Abdalla, 2004; Abdel-Aty et al., 2006; Oh et 

al., 2005; Lee et al., 2003a), identifying their types (Golob et al., 2004; Pande and Abdel-Aty, 

2006a, 2006b ), understanding crash mechanism (Lee et al., 2002, 2003a, 2006; Luo and 

Garber, 2006) and exploring the possibility to introduce countermeasures to pacify hazardous 

traffic conditions (Abdel-Aty et al., 2009; Lee and Abdel-Aty, 2003). Distinguishing 

hazardous traffic conditions from normal can be broadly classified into statistical approaches, 

such as, nonparametric Bayesian statistics (Oh et al., 2005), aggregate log-linear model (Lee 

et al., 2003b), generalized estimating equations (Abdel-Aty and Abdalla, 2004), matched case 

control logistic regression (Lee et al., 2006; Abdel- Aty et al., 2004), seemingly unrelated 

negative binomial regression (Abdel-Aty et al., 2006) and artificial intelligence (AI) based 

approaches, such as, probabilistic neural network (Oh et al., 2005; Abdel-Aty et al., 2008), 

normalized radial basis function (Abdel-Aty et al., 2008), naive Bayes (Luo and Garber, 

2006), Bayesian Network (Hossain and Muramachi, 2013b), etc. Regarding studies 

concerning understanding crash mechanism, Hossain and Muramachi (2013a) identified 

clusters of hazardous traffic with Classification and Regression Trees. Abdel-Aty et al. (2005) 

found specific high-speed and low-speed regimes highly associated with crash. Pande and 



Abdel-Aty (2006b) and Lee et al. (2006) ascertained that lane-changing related crashes are 

heavily influenced by average speeds at upstream and downstream along with difference in 

occupancy on adjacent lanes and standard deviation of volume and speed at a downstream 

location point of crash occurrence. All these studies provide ample evidence of a significant 

difference between pre-crash and normal traffic conditions. At present, attempts to introduce 

real-time interventions to smooth the traffic back to normal have commenced. Due to 

associated high risk, such studies cannot be conducted with real life data. Researchers have 

found it plausible to apply micro-simulation to develop pre-crash situation and apply various 

interventions, such as, variable speed limit (Abdel-Aty et al., 2006a, 2008b; Lee and 

Abdel-Aty, 2008, Lee et al., 2004), ramp metering (Abdul-Aty and Gayah, 2010; Lee et al., 

2006b), variable message signs (Al-Ghamdi, 2010; Lee and Abdel-Aty, 2008), etc. to bring 

the traffic condition back to normal. Therefore, a deeper understanding of the pre-crash traffic 

condition from the perspective of fundamental traffic flow theories is required. An attempt to 

understand the distinctions between pre-crash normal traffic conditions from the perspective 

of fundamental traffic flow theories is yet missing. The purpose of this research is to revisit 

traffic flow theories separately for pre-crash and normal traffic conditions. The specific 

objectives are to: 

 Derive and compare classical two-phase traffic flow relationships for pre-crash and

normal traffic condition data. This will include deriving four classical traffic flow

theories – Greenshields, Greenberg, Underwood and Bell-shaped models, separately

for pre-crash and normal traffic data.

 Evaluate longitudinal variation of traffic flow relationships both in time and space

scale for pre-crash traffic data,

 Conduct hypothesis tests to detect differences in pre-crash and normal traffic

conditions and discuss the variations, if any, and,

 Follow the same work flow for three-phase traffic flow theories (detector based and

correlation based methods).

2 STUDY AREAS AND METHODOLOGY 

Shibuya 3 and Shinjuku 4 routes of Tokyo Metropolitan Expressway, situated in the center of 

Tokyo Metropolitan area connecting and covering some important business and residential 

areas, are chosen as the study area. The length of Shibuya 3 and Shinjuku 4 routes are 

respectively 11.9 kilometers and 13.5 kilometers. This study area contains 210 detectors, 

mostly uniformly spaced, having average inter-detector spacing of around 250 meters. The 

detectors store data on speed, flow, occupancy and number of heavy vehicles. The crash data 

included information on date, time, location, vehicles involved, and lane number. Both crash 

and detector data were collected for 6 months (March 2014 to August 2014) of which 620 

crash samples had complete data. Table 1 shows a brief description of the data (speed, flow 

and occupancy) used for both normal and pre-crash conditions. Figure 1 shows the box plot of 

the same data. Also, a map was provided which included information on location of ramps, 

detector positions, and section length (Figure 2). The routes being heavily access controlled 

ensure uninterrupted flow, which is essential for deriving classical two-phase traffic flow 

theories.  



Table 1: Description of the data used 

Normal Conditions Pre-crash Conditions 

Occupancy 

(%) 

Minimum 0.30 0.00 

First Quartile 4.50 6.30 

Median 7.50 13.15 

Third Quartile 14.05 28.85 

Maximum 69.80 100.00 

Flow 

(veh/min) 

Minimum 0.00 0.00 

First Quartile 20.00 20.00 

Median 32.00 28.00 

Third Quartile 44.00 38.00 

Maximum 69.00 69.00 

Speed 

(km/hr) 

Minimum 0.00 0.00 

First Quartile 53.70 16.10 

Median 72.17 38.90 

Third Quartile 81.36 68.50 

Maximum 117.85 117.85 

Figure 1: Boxplot of Normal and Pre-crash Data 

Figure 2: Shibuya 3 and Shinjuku 4 routes of Tokyo Metropolitan Expressway 

Source: provided by Tokyo Metropolitan Expressway Company Limited 

The overall methodology involves defining and extracting ‘pre-crash’ and ‘normal’ traffic 

condition data and then re-constructing the classical two-phase and three-phase traffic flow 

models using them for further comparison. 



For two-phase theory, the ‘speed-density’ relationship was transformed into linear form and 

hypothesis tests was conducted to investigate if the differences in slopes are significant 

between ‘pre-crash’ and ‘normal’ traffic conditions. Finally, the differences in characteristics 

of the curves were explained based on traffic flow parameters. Traffic flow theories utilize 

speed, flow and density as the input variables. Here, although speed and flow values are 

obtained, the detectors provide occupancy values instead of density. Existing literature 

suggests that if the proportion of heavy vehicles is low (in the study area, it is around 8% 

only) and the detector length is roughly same (which is the case for the study area) then 

density and occupancy can be assumed to have a linear relationship (Kim and Hall, 2004). 

Hence, for model comparisons, the parameter values that were determined include, free flow 

speed, speed at maximum flow as well as occupancy factors during jam density and density at 

maximum flow conditions. For convenience and ease of understanding, the notations for the 

latter two parameters as well as occupancy have been kept as and K, however, the 

values should not be confused with actual jam density, density at maximum flow condition 

and density. 

For three-phase theory the speeds of the wide moving jam at the downstream propagating 

upstream were calculated for pre-crash and normal traffic conditions for each crash and their 

values were compared. 

2.1 Deriving linear forms for classical two-phase traffic flow theories 

Fundamental relationship among three major variables of traffic flow theory: flow (q), speed 

(V) and density (K) is given below: 

(1) 

Table 2 presents the fundamental non-linear relationships of Greehshields (1934), Greenberg 

(1959), Underwood, (1961) and Bell-Shaped (1967) classical traffic flow theories with respect 

to density and speed along with their linear transformations where = jam density;  = 

free flow speed;  = density at maximum flow; = speed at maximum flow level; K= 

density and V=speed. As mentioned earlier, occupancy data were used instead of density and 

the notations , and K used in this manuscript stand for occupancy factors during jam 

density, density at maximum flow conditions and occupancy. ‘R-program’ was used to 

develop the regression models. 

Table 2: Transformation from speed-density function 

Model Speed-density Function Transformation 

Greenshields 

Greenberg 

Underwood 

Bell Shape 

2.2 Methods for three-phase traffic flow theory 

The flow-density method is ideally suited for long freeway sections without the presence of 



on or off ramps. Our study area, being an urban expressway, is densely packed with ramps. 

The graphical method processes the image with a proprietary software called ASDA/FOTO. 

Hence, this study choses only detector based and the correlation methods. 

2.2.1 Detector based Method 

Two detectors b and a with sufficiently large distances are chosen which is then divided by 

the difference in the registration times of the downstream jam front of each detector. The 

velocity of the downstream jam front can be calculated as: 

(2) 

Here Loc(b) and Loc(a) are the exact locations of the chosen detectors and  and  are 

the specific times in minutes when the real-time speeds are just greater than 30 km/h after a 

wide moving jam. 

2.2.2 Correlation Method 

The velocity of a downstream detector b can be correlated with its upstream counterpart a 

(Munoz and Daganzo, 2002) as follows:  

(3) 

Here, 

(i=Time index, k= Time lag in minutes)  

A cross-correlation function is then used for measuring the wave velocity for each amount of 

time lag used.  

(4) 

The value 60 converts u into km/h. Then a graph of flow correlation versus wave velocity is 

produced. The velocity, which has the highest correlation, is the downstream jam velocity for 

the traffic flow. 

2.3 Comparing linear regression models of two independent samples 

Comparing slopes of simple linear regression models is a common practice in statistics which 



is conducted often to test whether the linear regression lines derived from different samples 

are coming from same population. Assume that two simple linear regression lines, having 

slopes b1 and b2 were constructed with two samples having form of Equation 5. 

(5) 

To test if they come from the same population: 

1. Test the null hypothesis: H0: = β1 = β2, i.e., β1 - β2=0.

2. The t-test statistics will be:

(6) 

3. If the null hypothesis is true then the difference in the slopes will form a normal

distribution with mean to be zero, i.e.,

where, 

(7) 

Finally, a value for level of significance (α) will be set. If p-value is less than α then the 

difference in slope will be considered as significant. Otherwise, the null hypothesis cannot be 

rejected. ‘R-program’ was used to conduct the hypothesis test (Dalgard, 2008). 

2.4 Detector Data Extraction and Preparation 

2.4.1 For Two-Phase Traffic Flow Theory 

The ‘pre-crash’ data were defined as crash data within the vicinity of the crash location just 

before its occurrence time where ‘vicinity’ refers to a zone bordered by the nearest upstream 

(UD) and the nearest downstream (DD) detector locations with respect to crash location as 

presented with Figure 3. The study area has two lanes in each direction and each lane has one 

detector installed, i.e., there are two detectors at each detector location. Hence, the values of 

speed and occupancy were averaged and flows were added to obtain the final values of speed, 

flow and occupancy at each detector location. For every crash case, data were extracted for 

speed, flow and occupancy for every minute up to the tenth minute prior to crash as XDtY 

where X = U (Upstream) or D (Downstream), Y = S (Speed) or F (Flow) or O (Occupancy) 

and t = 1, 2, …., 9. Hence, UD6S represents the speed at the nearest upstream detector 6 

minutes before crash. For ‘pre-crash’ data, 18 datasets (2 for upstream and downstream X 9 

for the 9 time slices) each containing 620 records were created and named as Xt where X = U 

(Upstream) or D (Downstream) and t = 1, 2, …., 9. For example, D7 represents a dataset 

having speed, flow and occupancy data of all the 620 crashes collected from the nearest 

downstream detector seven minutes prior to crash. 

The ‘normal’ traffic data were defined as speed, flow or occupancy data of any time at any 

location on the expressway where there was no crash taking place three hours before or after 

that time. To construct this dataset, data were extracted for each detector for each month in 

such way that it contained 24 hour data of at least one Sunday, Monday, Tuesday and so on 

for every month during the study period. To avoid bias, instead of selecting just one sample, 

four normal datasets were constructed by randomly selecting 1000 samples from the complete 

‘normal’ traffic dataset. 



The authority supplied raw detector data for each lane covering information on speed in 

kilometers per hour, flow in number of vehicles, occupancy in percentage and number of 

heavy vehicles aggregated for every minute and stored in separate files for each day. The data 

were further aggregated for two lanes for each detector location by taking the average speed 

and occupancy of the two detectors and adding the two flow values. Also, it was necessary to 

transpose and rearrange the dataset for further use as the original dataset kept data of all 

detectors for a specific one minute in just one record. A program was written in C++ to extract 

the data and arrange it in a single file under these headers – Route number, direction (inbound 

or outbound), detector ID, date, time, flow, speed and occupancy. Finally, the detector data as 

well as crash data were imported into PostgreSQL relational database system (Maymala, 

2015) and the ‘pre-crash’ and ‘normal’ traffic condition datasets were generated after running 

a set of sub-queries fulfilling their definitions. 

Figure 3: Detector location with respect to crash location 

2.4.2 For Three-Phase Traffic Flow Theory 

Literature suggests that for detector based methods, for A5 freeway of Germany, distance of 

4.7 km was used for sections having no intersections or on or off ramps and a distance of 9 

km was used for sections having one intersection. (Rehborn et al. 2011). In this study, at first, 

sections with no on and off ramp were selected randomly from both directions of Shibuya 3 

route of Tokyo Metropolitan Expressway. A total of 148 crashes were found within those 

sections. Each of the chosen sections had a pair of detectors on each end. From the crash time, 

1 hour traffic flow data from the corresponding detectors were compiled to represent the 

pre-crash data. Unlike the two phase analysis, 1 hour pre-crash data was used instead of 10 

minutes. This is because, for our data it was observed that at least 1 hour is required for a 

wide moving jam to occur and then to dissolve to synchronized flow. To prepare the normal 

traffic dataset, from these chosen samples, randomly 1 hour samples were chosen when no 

crash took place in the corresponding direction of the route of the expressway at least 1 hour 

before and after that time. 

3. ANALYSIS AND RESULTS

The results obtained following the outlined methodology are organized into five sub-sections 

of which 3.1-3.4 are for two-phase and 3.5 is for three-phase theory. For two-phase theory, 

firstly, a detailed analysis was conducted on the four sets of the normal traffic data. This 

included producing classical scattered plots of speed-flow-occupancy, their linear 

transformations representing the four classical relationships and finally, a hypothesis test to 

calculate the variations among the four datasets. Secondly, the classical traffic flow 



relationships were derived for the 18 pre-crash datasets. Thirdly, the hypothesis tests were 

conducted to investigate if the ‘pre-crash’ relationships were significantly different from 

‘normal’ relationships. Finally, the findings were combined and presented in a systematic 

manner for two-phase traffic flow theory 

3.1 Deriving relationships for normal traffic condition 

Figure 4 and 5 illustrate the matrix scatter plot and the regression lines developed using 

density and speed data for normal traffic condition (Dataset 1) for the four models 

(Greenshields, Greenberg, Underwood, Bell Shape). Table 3 and 4 present the regression 

equations, their classical forms as well as corresponding R2, occupancy factor at jam density 

( ); free flow speed ( ); occupancy factor for density at maximum flow ( ) and speed at 

maximum flow ( ) values for all four datasets. All the models were found to be significant as 

reflected by the p-values. For the three-phase traffic flow theory, the value of wide moving 

jam for every crash case were calculated and compared with values when the traffic condition 

was normal. 

Figure 4: Matrix of scatter plots for normal traffic flow data (Dataset 1) 

The speed-flow, speed-occupancy and flow-occupancy relationships exhibit trends following 

the findings of existing literature (Figure 4). Combining the outcomes of Figure 5 and Table 4, 

it can be observed that the values of coefficient of determination (R2) are quite high for 

Greenshields, Underwood and Bell-shaped models, consistently explaining more than 75% of 

the variations of speed in estimating density. For these models, the values of R2 ranged 

between 0.74-0.84, 0.79-0.86 and 0.71-0.83 respectively. However, the R2 values were found 

to be low for Greenberg model ranging from 0.58 – 0.67, except for Dataset 1 where it was 

found to be 0.8. Expressways in general operate at high speed with low density which may 

have influenced the goodness of fit for Greenberg model as its performance is known to be 

unstable for such traffic conditions. Although the free flow speeds remain almost identical 

within the models for all four datasets, e.g., ranging from 94 – 96 kilometers per hour for 

Greenshields model, they exhibited variations among different models, ranging from as high 

as 120 kilometers per hour for the Dataset 1 for Underwood model to as low as 80 kilometres 



per hour for Bell-shaped model developed with Dataset 2. In general, Underwood models 

estimated a high free flow speed, Bell shaped models estimated a low value and Greenshields 

model estimated a free flow value nearly the average of these two values. The speed at 

maximum flow conditions ( ), which is an output of the Greenberg model, had slight 

variations among the four datasets, ranging between 30 to 34 kilometers per hour. The 

occupancy factors for maximum flow condition ( ) remain for both Underwood (14.91 to 

15.86) and Bell-shaped models remain close (16.45 to 17.67). Regarding the occupancy 

factors for jam density ( ), the values vary substantially between Greenshields (31.41 to 

36.57) and Greenberg (48.51 to 64.79) models, though, the variation within the four 

Greenshields models are slight. 

Figure 5: Regression lines in four models for Normal flow data (Dataset 1) 

Table 3: Regression and classical equations for normal traffic condition 

Dataset Model Regression line equation Transformation 

1 

Greenshields 

Greenberg 

Underwood 

Bell Shape 

2 
Greenshields 



11 

Greenberg 

Underwood 

Bell Shape 

3 

Greenshields 

Greenberg 

Underwood 

Bell Shape 

4 

Greenshields 

Greenberg 

Underwood 

Bell Shape 

Table 4: and estimated parameters value for normal condition 

Dataset Model 

1 

Greenshields 0.84 93.95 36.57 

Greenberg 0.80 32.34 59.24 

Underwood 0.86 119.86 15.13 

Bell Shape 0.75 82.43 17.67 

2 

Greenshields 0.76 94.05 32.36 

Greenberg 0.67 34.42 48.51 

Underwood 0.84 111.72 14.91 

Bell Shape 0.75 80.05 17.00 

3 

Greenshields 0.74 95.58 31.41 

Greenberg 0.58 30.25 64.79 

Underwood 0.79 113.88 15.46 

Bell Shape 0.71 82.54 16.45 

4 

Greenshields 0.76 94.23 32.56 

Greenberg 0.60 32.19 55.41 

Underwood 0.83 112.31 15.86 

Bell Shape 0.83 80.79 17.02 

3.2 Comparing slopes for linear transformation of normal traffic condition data  
The analysis results of the previous sub-section suggests the variation among four datasets to 

be low when compared within the four classical traffic flow theories separately, specially for 

Greenshields, Underwood and Bell-shaped models. However, to test if the variation between 

‘pre-crash’ and ‘normal’ traffic conditions, it is important to verify that the four datasets of 

normal traffic conditions are representatives of the population of normal traffic. For that, 

hypothesis tests were conducted (α = 0.05) as outlined in Section 2.3. As initially none of the 

normal traffic condition datasets can be considered as the representative of the population, all 

possible combinations were tested by each time picking two datasets. Hence, a total of 



 combinations were tested and the results of whether the null hypothesis, i.e., 

the slopes of the linear relationships are same or, the difference in slopes equal to zero, could 

be rejected are presented with Table 5 comparing the p-value and the level of significance (α 

= 0.05). Here, ‘Y’ represents that p-value is less than α , i.e., the difference is significant and 

‘X’ represents otherwise. Also, ND1_ND2 suggests that the comparison was made between 

normal traffic dataset 1 and 2, and so on. The outcome suggests that there were no significant 

differences among the four datasets while linearly fitting the Greenshields and Underwood 

models. However, linear transformations of Greenberg models constructed with Dataset 2 and 

3 as well as Bell-Shaped models with Dataset 3 and 4 were found to be significantly different 

suggesting that they may not have come from the same population. The poorer 

goodness-of-fit for Greenberg and Bell-Shaped models for Dataset 3 may further justify the 

findings (Table 4). 

Table 5:  Hypothesis test for slope comparison (normal traffic data) 

Model ND1_ND2 ND1_ND3 ND1_ND4 ND2_ND3 ND2_ND4 ND3_ND4 

GS X X X X X X 

GB X X X Y X X 

UW X X X X X X 

BS X Y X X X Y 

3.3 Deriving relationships for pre-crash traffic condition 

3.3.1 Pre-crash traffic condition at nearest upstream detector (UD)  

From the time one minute before crash until ten minutes before the crash, data for the nearest 

upstream detector were extracted and nine separate models were constructed for each of the 

four classical traffic flow models. The resulting coefficient of determination (R2) values and 

the models are presented with Table 6 and 7. All the models were found to be significant as 

reflected by the p-values. 

Table 6: Coefficient of Determination values for pre-crash conditions (UD) 

Model Name T=10 T=9 T=8 T=7 T=6 

Greenshields 0.54 0.54 0.53 0.55 0.54 

Greenberg 0.66 0.69 0.64 0.65 0.67 

Underwood 0.73 0.70 0.73 0.71 0.73 

Bell Shape 0.65 0.54 0.55 0.59 0.59 

T=5 T=4 T=3 T=2 T=1 

Greenshields 0.56 0.53 0.52 0.55 0.55 

Greenberg 0.70 0.61 0.69 0.70 0.66 

Underwood 0.74 0.75 0.71 0.78 0.76 

Bell Shape 0.59 0.61 0.50 0.62 0.63 

It is quite vivid from Table 6 that the overall goodness of fit for all the four models for all the 

time slices are substantially lower than that of the four sets of normal traffic data. Apart from 

the Underwood models, which performed the best in case of normal traffic conditions, the 

other three models had R2 value less than 0.7 in almost all the cases. No specific trend can be 



identified by observing the variations of R2 values over the ten minutes for any of the models. 

From classical equations in Table 7 and parameter values in Table 4, it can be observed that 

the values of   for Greenshields and Bell-Shaped models are considerably lower than 

normal condition as it varies from 86.18 to 89.07 kilometers per hour for Greenshields and 

67.36 to 73.03 kilometers per hour for Bell-Shaped for pre-crash conditions sensed at the 

nearest upstream detector from the crash location as compared to 93.95 to 95.58 kilometers 

per hour for Greenshields and 80.05 to 82.54 kilometers per hour for Bell-shaped models for 

normal traffic data. On the contrary, Underwood model estimates a higher value of  , 

ranging between 109.64 to 126.42 kilometers per hour whereas the normal condition 

suggested a value between 111.72 to 119.86 kilometers per hour. The speed at maximum flow, 

i.e., is an output of Greenberg model and it suggests a higher speed (35.32 to 37.12 

kilometers per hour) during pre-crash situation as compared to normal traffic conditions 

(30.25 to 34.42 kilometers per hour). The  values, obtained from Underwood and 

Bell-Shaped models, range between 14.1 to 15.11 and 18.62 to 20.37 respectively, suggesting 

a higher level of compactness for the pre-crash traffic conditions than the normal traffic 

conditions at maximum flow. Finally, the  values exhibit a sharp contrast between 

Greenshields and Greenberg model as the former (34.41 to 36.25) suggests a more compact 

condition at jam density but the later (41.97 to 44.95) indicates less compaction when 

compared with normal traffic conditions (31.41 to 36.57 for Greenshields and 48.51 to 64.79 

for Greenshields). Combining the findings, it can be understood that as most of the crashes 

take place during congested periods for the study area under consideration, the free flow 

speed ( ) was found to be lower for pre-crash conditions. Also, Greenshields, Underwood 

and Bell-Shaped models suggest a maximum flow condition which entertains a flow where 

the vehicles are moving more closely but at a higher speed than the normal traffic condition - 

which can be associated with higher crash risk. 

Table 7: Classical Equations (speed-occupancy) for pre-crash data (UD) 

Model Name T=9 T=8 T=7 

Greenshields 

Greenberg 

Underwood 

Bell Shape 

T=6 T=5 T=4 
Greenshields 

Greenberg 

Underwood 

Bell Shape 

T=3 T=2 T=1 

Greenshields 



Greenberg 

Underwood 

Bell Shape 

3.3.2 Pre-crash traffic condition at nearest downstream detector (DD) 

Similar to Section 3.3.1, nine models were built with the pre-crash data collected from the 

nearest downstream detectors from the crash location and the results of their goodness-of-fit 

and classical formulations are presented with Table 8 and 9. The corresponding p-values 

suggest that all the models were significant. 

Table 8: Coefficient of Determination values for pre-crash conditions (DD) 

Model Name T=10 T=9 T=8 T=7 T=6 

Greenshields 0.59 0.61 0.58 0.60 0.59 

Greenberg 0.66 0.67 0.75 0.76 0.74 

Underwood 0.78 0.82 0.79 0.79 0.77 

Bell Shape 0.64 0.71 0.64 0.66 0.60 

T=5 T=4 T=3 T=2 T=1 

Greenshields 0.60 0.59 0.63 0.60 0.60 

Greenberg 0.73 0.70 0.78 0.74 0.74 

Underwood 0.79 0.78 0.79 0.81 0.78 

Bell Shape 0.65 0.66 0.64 0.68 0.59 

Similar to the models built with upstream pre-crash data, these models also exhibit lower 

goodness-of-fit as compared to the datasets representing four normal traffic conditions. 

However, the R2 values are slightly higher for all four classical models for the pre-crash data 

from downstream detectors. The Underwood models performed the best with R2 values 

ranging from 0.78 to 0.82. Greenberg models also showed much improvement as their R2 

values varied from 0.66 to 0.78. However, no pattern could be seen in the performance 

variation among the models with time. 

As compared to the models built with upstream data, these models (Table 9) exhibit a lower 

free-flow speed ( ), i.e., substantially lower than that of normal traffic conditions, for all four 

classical models. The values for Greenshields, Underwood and Bell-Shaped models ranged 

between 82.26 to 88.38, 103.85 to 114.24 and 67.78 to 69.98 kilometers per hour. The speed 

at maximum flow ( ), yielded by the Greenberg model, was also lower (32.57 to 36.46 

kilometers per hour) than that with upstream detector data but still higher than the normal 

traffic condition data (30.25 to 34.42 kilometers per hour). Regarding occupancy factors for 

density at maximum flow ( ), the downstream detectors suggest a higher level of 

compaction (15.53 to 16.21 for Underwood and 19.76 to 20.38 for Bell-Shaped) as compared 

to the upstream detectors for pre-crash traffic conditions. Following the trend for , the 

Greenshields model present a higher level of compaction for the occupancy factors at jam 

density ( ). However, the corresponding values for Greenberg models are higher than that of 

the upstream dataset but still considerably lower than that of normal traffic conditions. 

Table 9: Classical Equations (speed-occupancy) for pre-crash data (DD) 

Model Name T=9 T=8 T=7 



Greenshields 

Greenberg 

Underwood 

Bell Shape 

T=6 T=5 T=4 

Greenshields 

Greenberg 

Underwood 

Bell Shape 

T=3 T=2 T=1 

Greenshields 

Greenberg 

Underwood 

Bell Shape 

Although the trends for both the pre-crash datasets (upstream and downstream) have been 

very similar in nature, due to better goodness of fit and clearer distinction with normal traffic 

conditions, i.e., larger differences in values for free-flow speed ( ), speed at maximum flow 

( ), density at maximum flow ( ), and occupancy factors at jam density ( ), the nearest 

downstream detectors with respect to crash locations can be considered to better explain 

traffic conditions relating to crashes. Among the four classical models, Underwood models for 

both upstream and downstream data exhibited better goodness-of-fit. At the same time, 

comparing results from both upstream and downstream detectors, it can be observed that 

several crashes on the study area were taking place where a densely packed but fast moving 

upstream was meeting a relatively denser and slower moving downstream traffic. 

3.4 Comparing slopes of normal and pre-crash data of estimated parameters 

Finally, hypothesis tests (α = 0.05) were conducted to investigate whether the differences in 

slopes of the models derived with pre-crash datasets and normal datasets are significantly 

different. As Section 3.2 suggests that all four normal traffic condition data except for Dataset 

3 can be considered to come from the same population, 1000 records were randomly selected 

from Dataset 1, 2 and 4 to construct a new normal traffic condition dataset to produce four 

classical models. Lastly, each of these models were compared with the corresponding models 

for both upstream and downstream datasets for all nine pre-crash time segments. Hence, a 

total of 4 (classical models) X 2 (upstream and downstream detectors) X 9 (time segments) = 

72 slope comparisons were made as presented with Table 10 containing the outcomes whether 

the null hypothesis was rejected (Y) or could not be rejected (X). The details of the process 



are explained in Section 3.3 and 4.2. Upstream and Downstream detector positions along with 

the time-segment have been represented as XD_t where X = U (upstream) or D (downstream), 

and t = 1,2,….,9. The findings from Table 10 illustrates that other than the linear 

transformation of Underwood model with data taken from the immediate upstream detectors 

of the crash locations just two minutes before the crashes, all other models for all other time 

segments were found to be significantly different from traffic conditions that existed during 

times when there were no crash hazards in the study area. 

Table 10: Hypothesis test for slope comparison (normal vs. pre-crash) 

Model UD_1 UD_2 UD_3 UD_4 UD_5 UD_6 UD_7 UD_8 UD_9 

GS Y Y Y Y Y Y Y Y Y 

GB Y Y Y Y Y Y Y Y Y 

UW Y X Y Y Y Y Y Y Y 

BS Y Y Y Y Y Y Y Y Y 

DD_1 DD_2 DD_3 DD_4 DD_5 DD_6 DD_7 DD_8 DD_9 

GS Y Y Y Y Y Y Y Y Y 

GB Y Y Y Y Y Y Y Y Y 

UW Y Y Y Y Y Y Y Y Y 

BS Y Y Y Y Y Y Y Y Y 

* GS = Greenshields, GB = Greenberg, UW = Underwood, BS = Bell-Shaped

3.5 Comparison of Pre-Crash and Normal traffic data for three-phase traffic flow theory 

For each of the pre-crash data, flow versus time graphs and their corresponding speed versus 

time graphs are produced. Time stamps are numbers assigned consecutively to each of the 

time intervals within the chosen duration. These graphs are used to identify the wide moving 

jam phase within the traffic for a particular duration. A wide moving jam is associated with a 

decrease in flow as well as a decrease in speed. One set of example is demonstrated with 

Figure 6. Here, duration from 15:40 to 16:40 was chosen with 1 minute time intervals. Hence, 

the first interval “15:40 -15:41” is assigned a time stamp of 1 and the last interval 

“16:39-16:40” is assigned a time stamp of 60. Also, we can observe from the figure that after 

the 40th minute, a major dip in both the flow and speed is observed simultaneously, indicating 

a wide moving jam. 



Figure 6: (a) flow versus time graph for one hour interval, (b) its corresponding speed versus 

time graph. 

After identifying the wide moving jam in the same way as detector based methods, time 

duration of 25 minutes is chosen from within the jam duration. Then the flow correlation 

between the upstream and the downstream detector and the corresponding wave velocity for a 

time lag of 1 minute to 15 minutes are calculated by using equation (3) and equation (4). Then, 

using these results, a figure of correlation values versus velocity is plotted as illustrated by 

Figure 7. From the figure, the velocity with highest correlation value would be the 

downstream jam velocity. As demonstrated with Figure 7, the maximum correlation of 0.55 is 

at velocity of 13.89 km/h.  

Figure 7: Correlation versus velocity diagram with the highest correlation value of 0.55 at 

around 13.89 km/h 



The same calculation was carried out for all 148 crash samples and their corresponding 

pre-crash and normal traffic data. Table 11 presents that the minimum, maximum, average 

downstream jam velocity and their standard deviations for different methods as well as 

different conditions. As all the values lay between -10 to -18 kph, just like two-phase traffic 

flow theory, both the pre-crash and normal traffic conditions are valid for three-phase traffic 

flow theory as well. It can be observed that the results yielded by both the methods are quite 

consistent where the pre-crash traffic exhibits a higher wide moving jam velocity propagating 

from downstream to upstream through traffic than the normal traffic condition. 

Table 11: Maximum, minimum, average and the standard deviation of the wide moving jam 

velocities for different conditions for detector based and correlation based method 

Detector Based Method Correlation Based Method 

Pre-crash Normal Pre-crash Normal 

Maximum -18.60 -13.89 -18.06 -12.04 

Minimum -11.10 -10.62 -11.93 -11.29 

Average -14.38 -12.37 -14.32 -11.67 

Standard Deviation 2.27 1.34 2.33 0.31 

4 CONCLUSIONS AND DISCUSSION 

The findings suggest that all four classical models of two-phase traffic flow theory exhibit 

high goodness of fit for normal traffic data. Apart from Greenberg models, the estimated R2 

value for Greenshields, Underwood and Bell-Shaped models were over 0.75 for all four 

normal traffic data samples. The nearest downstream detectors from the crash locations fit the 

pre-crash data better than the upstream detectors. For pre-crash conditions, data were 

collected from both nearest upstream and downstream detectors from the crash locations for 

every minute, up to nine minutes before crash. A total of 72 models were built considering 

nine time segments, two locations (upstream and downstream) and four classical traffic flow 

theory models. A sharp drop in goodness-of-fit as compared to the normal traffic condition 

were seen for all these 72 models, though, just like models with normal traffic data, all the 

models with pre-crash data were found to be statistically significant as well. Underwood and 

Greenberg models had higher goodness-of-fit for both upstream and downstream pre-crash 

data and Greenshields performed the worst for the same datasets. The values for the free-flow 

speed, speed at maximum flow, and parameters corresponding to jam density and density at 

maximum flow suggest that vehicle stream is more compacted for pre-crash conditions as 

compared to normal conditions. Also, at maximum flow conditions, the pre-crash traffic 

stream moves at a higher speed than the normal traffic speed. The pattern was visible for all 

four classical models and suggests a traffic condition which may require higher level of 

cognitive ability to negotiate from the perspective of drivers. At the same time, the tendency 

of a faster but compact upstream meeting a compact but relatively slower downstream just 

before crash was also identified. Finally, a hypothesis test was carried out to test whether the 

traffic flow models developed for pre-crash conditions had any significant difference with 

normal traffic conditions. The results suggested for both upstream and downstream pre-crash 



conditions that the null hypothesis that there was no difference in the pre-crash and normal 

conditions could be rejected with 95% confidence interval. 

Similar findings were also obtained from the three-phase traffic flow theory as both pre-crash 

and normal traffic data satisfied the range for wide moving jam in both the methods of 

calculation. Supporting the findings from two-phase theory, it was also observed that the wide 

moving jam moves faster from downstream to upstream for pre-crash conditions as compared 

to normal traffic conditions. Also, pre-crash data exhibited greater standard deviation for the 

calculated wide moving jam velocities than the normal traffic condition. 
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