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Abstract: In order to find significant factors for speed decrease single lane for one way 

highway, we estimate a stochastic frontier model (SFM) to obtain possible maximum speed 

under the given traffic volume. A purpose of this study is to analyze more detail time and 

space. It is an issue to propose the method for reduction of driving speed using big data. As to 

find a plausible functional specification, we estimated four specifications in SFM as follows: 

log, cubic, squared, linear; and found that squared in traffic volume gave best fit in log 

likelihood. By a decision tree analysis, heavy vehicle ratio in traffic and weather condition 

would have significant influence on temporal decrease in driving speed. 
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1. INTRODUCTION 
 

Progressive technology of information and communications allow us to get various big data, 

which is utilized for transportation planning, management, and evaluation. Tanishita et al. 

(2016) showed that changes in average speed affected on traffic accident rates per vehicle-

kilometer by using a five-minute continuous  monitoring data on an expressway. Weimin 

Zheng et al. (2017) focus on how to predict precisely the tourist's trip chain. They collected 

trip information from tourists using GPS tracking technology  and  proposed  a method 

behavior model matching for GPS data. From a viewpoint to shorten transportation time on 

road traffic, prediction on congestion occurrence about the timming and location is 

considered issue. In order to detect congestion, GPS information can be directly utilized by 

calculating vehicle speed and location. Shi An et al. (2016) developed a method to measure 

the evolution patterns of urban daily congestion based on GPS-equipped vehicle mobility data. 

The datasets in this study was a Harbin digital map and taxi GPS data. Xiangjie Kong et al. 

(2016) proposed an approach to estimate and predict the urban traffic congestion using car 

trajectory on GPS data. Eleonora et al. (2016) proposed a system to detect traffic congestion 

and accidents from real-time GPS data. Gaetano et al. (2016) proposed a method to give 

precise traffic predictions by exploiting a number of probe vehicle data. Seungwoo et al. 

(2016) suggested a new statistical model to find the optimal data range according to various 

analyses on each link and provide better transportation time on a specific link by day of the 

week. As shown in the above, most of conventional studies focused on congestion. However, 

a minor congestion such as temporal decrease in driving speed has been neglected. In single 

lane for one way, the influence of decrease in driving speed by slowly driving car remains 

until the section of two lanes. Therefore, it is important to confirm how often the decrease 

occurs and what the condition for the decrease is. For example, heavy vehicle with slow speed 

is a key element of the road network condition. Heavy vehicle with low speed would be a key 

factor to influence on driving speed. 
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Over the past few decades, several research has conducted to find other factors to influence on 

driving speed, such as road geometry, functional classification, roadside interference, traffic, 

speed limits, weather condition and so on. The AASHTO Green Book (2011) recommended 

the 85th percentile of the driving speed distribution to be used as a standard to evaluate road 

performance. However, most of driving speed models do not care for driving speed 

distribution. Tarris et al. (1996) reported that the loss of information by speed data 

aggregation reduce the regression variance, which may cause a downward bias of road 

geometry influence. Tarris et al. proposed a model for the entire speed distribution in vehicle 

group in order to avoid a point estimation of driving speed. Figueroa and Tarko (2005) 

developed a speed estimation models with linear combination of the mean and standard 

deviation of the speed distribution. The models gave different factors to influence on average 

speed and speed dispersion. Furthermore, in another publication by Figueroa and Tarko 

(2004), percentile specific and site-specific random effects were introduced in order to avoid 

biased parameters. In the estimated model the random effects was significant. Lobo et al. 

(2014) applied a stochastic frontier model developed in econometrics to driving speed data. 

However, influence of traffic volume on driving speed was not considered. 
 

The hypothesis in this study are as follows; even though the effect of traffic volume is 

removed, heavy vehicle significantly influence on speed. In order to test the hypothesis, we 

estimate a driving speed frontier model considering traffic volume and calculate a deviation 

from the frontier to observed speed, and finds the factor for the deviation. 

 

 

2. METHODOLOGY 

 

2.1 Stochastic Frontier Analysis 
 

The stochastic frontier analysis (SFA) was proposed in 1977 by Aigner et al. (1977) and by 

Meeusen and van den Broeck (1977), which is widely applied to measure efficiency of 

samples in econometric analysis (2008). Recent applications are found in many other fields as 

follows; agriculture, (Baten et al. (2009), Ali and Samad (2013)), finance (Wang (2003), 

Neffati et al. (2011)), public utility (Hattori (2002), Vishwakarma and Kulshrestha (2010)), 

and transportation (Pendyala et al. (2002), Cullinane et al. (2002), Holmgren (2013)). There 

are two different approaches in sample efficiency measurement; parametric and non-

parametric approaches. SFA is a parametric approach to evaluate efficiency of each 

sample, to estimate maximum output by use of available inputs. 

 

SFA is specified as follows 
 

(1) 
 

where,  
: sample in observation, 

i : output in sample  , 

: vector of input coefficients, 

X i  : vector of inputs of sample  , 

: error term, 

i : one-sided inefficiency term. 



The model consists of deterministic component  and 

two disturbance components. One of disturbance term is a random to give stochastic variation 

of samples as observation error. Other disturbance term measures a deviation from the 

stochastic frontier to each sample (i.e. is positive). In SFA, is specified in half-normal, 

truncated normal, exponential, and gamma distributions have been suggested as possible 

distributions. This paper specified as truncated normal distribution following to   
original specification. Since , an expected value of inefficiency for each sample is 

obtained as follows; 
 

(2) 

 
Note that is an expected value with stochastic term i , so it can be negative due to the 

variation of i .Therefore, depending on the error term, the stochastic frontier output can lie 

below the deterministic component. In this paper, the output below the frontier level lead to 

inefficiency. 

 

2.2 Decision Tree Analysis 

 

Decision tree analysis gives a hierarchical tree structure to classify the sample set in terms of 

reference attribute distribution which is called target attribute in decision tree analysis, Ilyes 

Jenhani et al. (2008). The tree structure is composed of following three basic elements, nodes 

corresponding to an attribute to give different distribution for target attribute, edges 

corresponding to connecting another possible attribute. And leaves with homogeneous 

samples against the other leaves in same hierarchy. Such representation allows us to induce 

decision rules to classify new samples. In fact, each path from the root to a leaf corresponds to 

a conjunction of attributes and the tree is considered as a disjunction of these conjunctions. 

The majority of decision trees is made up of two major procedures: the building (induction) 

and the classification (inference) procedures. 

 

Building procedure: Given a training set, building a decision tree is done by starting with an 

empty tree and selecting for each decision node by repeatedly applying appropriateness test 

about the candidate attribute. The principle to select an attribute is to maximally diminish the 

mixture of classes between each training subset created by the test, thus, making easier the 
 

             

reaching leaves and fixing their corresponding classes. Note that the above procedure can not 

give on unique optimized decision tree, because some trials are made at node section. 

However, the obtained tree is considerably robust for slightly different dataset or parameter 

setting. 

 

Classification procedure: To classify a new sample, having only values of all its attributes, we 

start with the root of the constructed tree and follow the path corresponding to the observed 

value of the attribute in the interior node of the tree. This process is continued until a leaf is 

encountered. Finally, we use the associated label to obtain the predicted class value of the 

sample at hand. 

 

In this study, we apply decision tree analysis for the dataset about the deviation from 

estimated frontier in order to find some leaves to include highly deviated, i.e. low speed 

samples with the combination of attributes appearing on the path from the root to the leaf. 



Since our purpose is not to classify the new sample, the latter classification procedure is 

skipped. 

 

 

3. DATA 

 

In stochastic frontier analysis, objective variable is speed of vehicle. In order to remove 

structure effect, we used a data of traffic volume as an explanatory variable. The data is 

observed on Tottori-Himeji line between April 2015 and March 2016. Tottori-Himeji line was 

constructed as local highway to connect Tottori city (Capital in Tottori Prefecture) to Chugoku 

expressway at Sayo Interchange through Himeji-city to connect Sanyo expressway. 

Tottori-Himeji line is basically single lane for one way, except for some interchange sites. 

Some sections around Tottori and Sayo are tolled, but the intermediate sections are untolled, 

hence the speed limit is not constant over the section. The data is collected by four traffic 

counters located in different site and the speed is averaged over every hour from am 7 to pm 6. 

In decision tree, the target attribute is inefficiency (i.e. index of driving speed) estimated from 

the stochastic frontier model, and other attributes are heavy vehicle ratio (HVR) by traffic 

counter and weather information. Weather is an observed at monitoring site, and we made 

matching the closest monitoring site with each traffic counter. 

 

The location of traffic counters and weather monitoring site is shown in Figure 1, and 

summary of data are shown in Table 1. Sample size is 4,382 at Shimoajino, 4,359 at 

Katayama, 4,346 at Takatsuhara, 4,358 at Minari bridge because some missing or erroneous 

observation occurred with zero traffic but positive speed record. 
 

 
 

 

Figure 1. The location of traffic counters and weather monitoring site 
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Table 1. Summary of data 

Variable description Average 
Standard

 

 

 
Minimum Maximum 

  Deviation   

Traffic volume 
 

Shimoajino 443.3 126.1 1 1105 

Katayama 493.5 131.5 1 1152 

Takatsuhara 413.8 121.4 1 1131 

Minari bridge 360.6 114.6 1 1104 

Speed(km/h) 
 

Shimoajino 70.6 8.2 0 82 

Katayama 70.1 5.9 0 77 

Takatsuhara 77.6 7.5 0 87 

Minari bridge 75.2 8.6 0 85 

HVR (%) 
 

Shimoajino 10.4 0.1 0 100 

Katayama 10.1 0.1 0 79 

Takatsuhara 14.7 0.1 0 75 

Minari bridge 17 0.1 0 100 

Rain (dummy) 
 

Tottori 0.1 0.3 0 1 

Chizu 0.1 0.3 0 1 

Snow (dummy) 

Tottori 0.02 0.1 0 1 

Chizu 0.02 0.1 0 1 

- Not relevant. 
 

 
4. EMPIRICAL  ANALYSIS 

 

4.1 Estimation of Speed Frontier 

 

The explanatory variables in stochastic frontier model (SFM) are linear combination of traffic 

volume with differently transformed as follows: log, cubic, squared and linear. In order to find 

a plausible specification, we estimated the following equations in (3) to (6). 
 

(3) 

(4) 

(5) 

(6) 

 
Hereafter, eq. (3) to (6) are called log, cubic, squared and linear function, respectively. 

Comparison of plot in estimated and measured value is shown in Figure 2 and comparison of 

log likelihood is shown in Table 2. In log and cubic function, estimated value of traffic 



volume appearing around the area close to zero. However, it is not acceptable because under 

the very low traffic volume such as the free flow condition, drivers can choose any preferable 

speed. Therefore in ordinary Q-V plot traffic volume in vertical axis, speed in horizontal axis, 

speed lies upper area around low traffic volume. Log and cubic function is not acceptable due 

to the above discussion. Cubic function is not good around higher traffic (  ) in 

terms of data fitting. On the other hand, squared and linear function is better fitting than the 

other two functions. Furthermore, to compare with log likelihood, squared function is better 

than linear function. Therefore, we selected squared function as frontier curve. SFM 

parameter estimation results are shown in Table 3 and Table 4. All the parameter are 

significant and all       are about 1.0. 
 

 
 

Function Shimoajino Katayama Takatsuhara Minari bridge 
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(4) 

: cubic 
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(5) 

: squared 
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(6) 

: linear 
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Figure 2. Comparison in estimated and observed value 

(horizontal: traffic volume, vertical: speed) 



 

  Table 2. Comparison of log likelihood   
 

 

 

 

 

 

 

 

 

 

 

Independent Variables 
 

 

 

 

 

 
 

 

 
 

 

 

*** Significant at 0.1% level, , 
 

  Table 4. SFM estimation results at Takatsuhara and Minari bridge   
Takatsuhara Minari bridge 

Independent Variables 
 

 

Parameter t score Parameter t score 
 

Constant 69.136*** 125.004 65.944*** 95.636 

Traffic volume (linear) 0.053*** 25.717 0.067*** 23.723 

Traffic volume (squared) -4.E-05*** -26.086 -6.E-05*** -23.851 
2 

68.613*** 40.960 95.394*** 41.086 
 

 

log-likelihood (at converged) 

0.971*** 

-12783.3 

376.886 0.965*** 

-13599.9 

273.671 

Observations 4,346  4,358  

*** Significant at 0.1% level, , 
 

 

  

Figure 3. Definition of inefficiency 
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(3) : log -11585.7 -10635.0 -11912.8 -12910.4 

(4) : cubic -12320.9 -11573.6 -12412.3 -13410.1 

(5) : squared -13322.3 -11848.2 -12783.3 -13599.9 

(6) : linear -13595.9 -12116.9 -13056.2 -13855.2 

 

Table 3. SFM estimation results at Shimoajino and Katayama 
 Shimoajino  Katayama  

 Parameter t score Parameter t score 

Constant 63.472*** 83.527 63.843*** 122.993 

Traffic volume (linear) 0.054*** 19.202 0.040*** 22.588 

Traffic volume (squared) -5.E-05*** -21.762 -4.E-05*** -25.223 

2 79.898*** 37.737 43.336*** 40.029 

 
log-likelihood (at converged) 

0.958*** 

-13322.3 

206.391 0.967*** 

-11848.2 

311.986 

Observations 4,382  4,359  

 



4.2 Factors for Inefficiency 
 

Factors for the inefficiency are detected by decision tree. Inefficiency is calculated as the 

deviation from expected frontier under the given traffic volume to each observation. 

Definition of inefficiency is shown Figure 3. In decision tree, dependent variable (driving 

speed) is categorized by each 10percentile of its distribution in order to make it easy to find 

inefficiency deviation. By this data processing, driving speed index uniformly distributes over 

0 to 90. The explanatory variables are as follows: weekday dummy, time in a day, season, site 

(at traffic counter point), heavy vehicle ratio (HVR), and weather (rain and snow dummy). 

The  decision  tree  estimated  by  using  statistical    

maxdepth:3 and cp (complexity parameter):0.0001. The result for all observations is shown in 

Figure 4. The nodes on decision tree reveals the factor to influence inefficiency distribution 

and those sample size is shown at the leaves (i.e. end node). Node 4, 5 and 14 seems minor, 

because the sample size of those group is less than 1% in whole sample. Site influences 

inefficiency at first, and whole sample are divided into Katayama and others. Then, HVR is 

the next factor following to Katayama. The traffic counter at Shimoajino locates behind a 

tunnel and at Takatsuhara and Minari bridge locates around a ramp. On the other hand, the 

traffic counter at Katayama locates a road without a tunnel and apart from ramp over 1km. 

Considering such difference in observation site Shimoajino, Takatsuhara, Minari bridge are 

less inefficiency (i.e. skewed to lower driving speed) than Katayama. In Katayama, HVR and 

the time in a day influences on speed which are inefficient from 8 to 10, from 13 to 15 and 18, 

or heavy vehicle ratio is larger than 0.076. 

 

The decision tree using whole sample showed site specific factor is much stronger than other 

common factors. Hence, we apply the decision tree to site-wise data in Shimoajino, Katayama, 

Takatsuhara, and Minari bridge, respectively. The dependent variable is inefficiency 

categorized in 10 percentile for each site. Therefore, corresponding driving speed of 

percentile threshold results of analysis are shown in Figure 5 to 8, respectively. In Shimoajino, 

the value of 50 percentile, equal to the deviation from estimated frontier, is about -5.0km/h. 

The season influence on the speed and winter is more efficient than other seasons. In case of 

snow at Node 12 a trend with low speed in snowing is confirmed, although those node sample 

size is about 1.0% of the whole. In other seasons, it is more inefficient in time in a day with 

13, 14, and 15 than others. The sample size of Node 5 is 18.3%. In Katayama, the value of 50 

percentile is about -3.6km/h. As mentioned above, HVR and time in a day influence on the 

speed. Node 7 is more inefficient than Node 8. That is an effect of snow but those sample size 

is about 0.5% of the whole sample size. In Takatsuhara, the value of 50 percentile is about 

-4.4km/h. Time in a day is most fundamental factor on speed with more inefficient between 7 

to 10 and 13 to 15 and 18 than the others. Node 3 shows speed decrease occurs at snowing, 

but those node sample size is minor 1.6% of the whole, as same as Shimoajino. In Minari 

bridge, the value of 50 percentile is about -5.5km/h. The factor on lower speed is not only 

season or HVR but also rain. Especially, in the case of rain (Node 7), the speed is much 

decreased and the sample size of Node 7 is 8.3%. In spring and rain, the time in a day 

exception 10, 13, 16 and 17 influence on the speed but not 1.7% of the whole sample size. 

 

4.3. Discussion 
 

Through above results, following two tendency are commonly observed over several sites. 

First, the existence of heavy vehicle influence on inefficiency of driving speed. That is 

confirmed  Shimoajino,  Katayama  and  Minari  bridge  except  Takatsuhara.  Especially  in 



Shimoajino, the sample influenced by heavy vehicle shares approximately 20% of whole 

sample size. Secondly, weather influence on driving speed decrease. Although those sample 

size is small, snow and rain on this route was significant impact on driving speed. However, 

the sample size influence by rain was related large in Minari bridge, such as 8.3%. According 

to results of Shimoajino, it is find that the degree of the influence of heavy vehicle on driving 

speed decrease is appears the time in a day between 13 to 15. Such the tendency imply the 

regular freight traffic uses the highway. If these heavy vehicle is an important local economic 

activity, it is difficult to sift the heavy vehicle into other route. Therefore, an expansion of 

width in this section is one of policy option. Weather influence on driving speed coupled with 

heavy vehicle. In the case of snow, an appropriate slip prevention by chemical substance is 

important. Moreover, for the rain, to improve drainage performance considering the condition 

of road surface is recommended. 

 
 

5. CONCLUSION 

 

This study proposed a statistical procedure to detect the potential factor to influence on speed 

decrease in single lane for one way expressway. We estimate a speed frontier to remove traffic 

volume influence. The inefficiency (i.e. an index of speed decrease) is analyzed by decision 

tree. 

 

The decision tree found the factor for speed decrease. As expected initially, heavy vehicle 

significantly influence on driving speed decrease at 3sites. Furthermore, we found the 

influence of weather (rain and snow) on driving speed is also significant and the coupling 

with heavy vehicle and bad weather gives more decrease in driving speed. 

 

Remaining and further discussed issues are follows. We use the data measured at fixed 

location in this paper. If we get a GPS data from a floating car probe data, it is possible to 

detect the location and the timing of driving speed decrease together with other conditions. 

The data handling procedure to deal with such space-time big data can be developed 

following to our study. 
 

 
Figure 4. The decision tree for all inefficiency 

1: Shimoajino / 5: Takatsuhara 
/ 7: Minari bridge 

3: Katayama 
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Figure 5. The decision tree for the inefficiency at Shimoajino 

 

 

 
Figure 6. The decision tree for the inefficiency at Katayama 
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Figure 7. The decision tree for the inefficiency at Takatsuhara 

 

 

 
Figure 8. The decision tree for the inefficiency at Minari bridge 
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