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Abstract: The Activity-based approach has been widely accepted as a more realistic alternative 

to traditional aggregated trip-based models with better capability to model the activity-travel 

choice behaviors of individuals. Recently, attention has been given to the relationship between 

activity durations and travel times. Activity-based models are studied to estimate individuals’ 

activity and travel choices for the purpose of long-term transport planning. The traditional 

household interview survey data from the Travel Characteristics Survey (TCS) conducted in 

Hong Kong in 2011 is used in this paper. With this, we assess the effects of travel times 

(including departure times to and from work) on the activity durations of home-work-home 

(HWH) pattern workers in Hong Kong. An activity-based model is calibrated to quantify the 

temporal utility functions of the HWH activities of workers by time of day. Finally, insightful 

findings on the data analysis and model results are given in conclusions together with 

recommendations for further study. 
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1 INTRODUCTION 

Decades have passed since the development and evolution of transportation planning models 

since the pioneering research in the early 1950s (Mitchell and Rapkin, 1954). As the first 

generation of transportation planning models, the aggregated trip-based models were adopted 

and implemented by some transportation departments for travel demand prediction at early 

times. These models attempt to represent the behavior of a group of travelers in an aggregated 

way instead of the behavior of one single individual. Although the aggregated approach can 

provide an overview of travel behavior at the traffic zone/district level, such models have been 

severely criticized for their inflexibility and inaccuracy. To meet the needs of presenting 

detailed individual/household travel behavior for travel demand modeling, disaggregated 

approaches have evolved from aggregated approaches, such as VISUM and TRANSIMS. 
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However, despite this movement, trip-based models are still criticized for their limitations: (1) 

the models ignore the fact that the demand for travel is derived from the desire for activity 

participation; (2) traditional trip-based models only focus on aggregated number of trips (or 

tours) between two traffic zones and ignore the spatial and temporal relationships between trips 

and activities completed by the same individual; and (3) those models view individuals as 

decision makers isolated from the household context. 

 In response to the need for more realistic models, the activity-based model was proposed 

to account for the fact that travel demands are derived from the desire for activity participation 

(Hagerstrand, 1970; Kitamura, 1988; Axhausen and Gärling, 1992). Compared with traditional 

trip-based models, activity-based models have following advantages: (1) The models consider 

the effects of interactions between household members on the individuals’ decision makings 

and (2) travels are no longer considered as isolated trips but as parts of activity patterns with 

realistic rules and constraints, including activity sequences, the durations of the activities, and 

the travel modes. 

One example is illustrated as follow for explaining the advantages of the activity-based 

model compared with the trip-based model. In a household with children that needed to be 

escorted to school in earlier morning, the employed parent may first conduct a trip to drive 

his/her children to school first and then drive from the school to his/her work place. Under this 

situation, the traditional trip-based model may generate two origin-destination attractions, i.e. 

home to school attraction for the children and home to work location for the employed parent. 

However, under the context of household interaction, the travel from home to work place for 

the employed parent is replaced with two consequent trips, i.e. one escorting trip from home to 

the children’s school following by the other one from children’s school to the parent’s work 

place. From the example, we can see that the traditional trip-based model might mispresent the 

trip makings and unable to present the escort travel behavior accurately. In contrast to the trip-

based models, activity-based approach considers the interactions between individuals (i.e. 

household interaction in this sample) and the relationship between activities and trips (i.e. the 

home-school travel followed by the school-work travel). Therefore, the activity-based model 

can better present the activity-travel realism and is more accurate for the purposes of long-term 

transport planning and evaluation of transport policy. 

Although there were pioneering researches in earlier 1950s (Mitchell and Rapkin, 1954) it 

was not until the 1980s that a boom of studies on activity-based models was witnessed. In the 

past four decades, various activity-based models have been proposed and implemented 

(Bowman, 1998; Bowman and Ben-Akiva, 2000; Recker, 1995; Bhat and Koppelman, 2003; 

Li et al. 2013). Due to the variety of implemented environments, different methods for these 

models have been developed for different cities (Rasouli and Timmermans, 2014; Li et al., 

2013). 

In this paper, the activity-based model falls into the category of economic models. The 

theoretical foundation of economic models for the activity-based approach is the theory of 

random utility maximization (McFadden et al., 1973; Ben-Akiva and Lerman, 1985; Adler and 

Ben-Akiva, 1979). These models assume that each activity is associated with a specific utility 

perceived by the participants. Individuals are assumed to perform rational behavior. They 

choose activities for participation to maximize the total utility he or she gains (Xiong and Lam, 

2011).  



 

 

Various utility functions have been proposed (Joh et al., 2002; Ettema et al., 2004; Fu and 

Lam, 2014; Fu et al., 2015). Individuals adjust their decisions on activity participations 

regarding the utility they perceive. Therefore, the definitions and calibration results of the utility 

functions for activity-based models play important roles in travel demand prediction. A brief 

overview of the historical development of the travel demand models in this section was given 

in Table 1. 

 

Table 1. Summary of travel demand models conducted 

Travel demand 

models 

Trip-based models Activity-based models 

Aggregated 

approach 

Lowry (1964); 

MUSSA (Martinez, 1996); 

EMME 

Li et al. (2010);  

Xiong and Lam (2011); 

Fu and Lam (2014); 

Fu et al. (2015) 

Disaggregated 

approach 

TRANSIMS; 

VISUM; 

Antoniou et al. (1997) 

 

BB System (Bowman and Ben-Akiva, 

2000); 

ALBATROSS model (Arentze and 

Timmermans, 2004); 

TASHA (Miller and Roorda, 2003) 

 

In this study, in order to examine the profiles of the mechanism how the utilities of activities 

affect individuals’ activity participation by time of day, we adopted the bell-shaped marginal 

utility function used in the ALBATROSS model (Joh et al., 2002) to calibrate the proposed 

activity-based model for HWH pattern of workers. Using household interview survey data from 

Hong Kong collected in 2011, this paper aims to calibrate the marginal utility functions of 

activities by time of day for long-term travel demand forecasting, particularly for activity-travel 

choice behaviors. The estimation performance of the proposed activity-based model will be 

assessed and discussed. 

The model calibrated in our paper uses the marginal utility functions of work/home 

activities. It can be used to model the daily activity-travel utility when the disutility of travels 

being incorporated in the activity-based network equilibrium model (Lam and Yin, 2001). With 

this activity-based approach, changes in activity-travel choice behavior in responds to the 

transport policies (e.g., reduction or increment in travel times) can be evaluated using the 

calibrated functions in this paper. People may change their decisions on the durations of 

activities (longer/shorter), alter the departure times, or even add/ cancel the activities to/from 

their original schedules subject to time availability as a result of transport policy change (Fu 

and Lam, 2014). 

 The remainder of the paper is organized as follows. Section 2 introduces the Travel 

Characteristics Survey (TCS) database and presents some key travel characteristics in Hong 

Kong with analytical discussions. Section 3 introduces the formulation of the activity-based 

model and calibration method. Section 4 presents the calibration results for the marginal utility 

functions of the proposed models for HWH pattern workers. Finally, Section 5 concludes the 

research findings and gives suggestions for further study. 



 

 

2 PROFILE OF TRAVEL CHARACTERISTICS SURVEY 2011 IN HONG KONG 

 

The dataset we used for the analysis and calibration of the activity utility function is taken from 

the household interview survey of the Travel Characteristics Survey conducted in Hong Kong 

in 2011. Hong Kong is a metropolitan city with a population of 6.88 million at the time of the 

TCS surveying period (late 2011 to early 2012). With an area of 1,110 km2, Hong Kong is 

mostly covered by mountains. As a result, Hong Kong is a highly dense city as only around 24% 

of the land is used for urban development, with the population density of up to 50,000 persons 

per square kilometer in most urban areas. 

 Such a high-density environment with limited land use makes the development of 

transportation a challenge. However, it is important to develop better transportation systems to 

meet the requirements of urban development. Thus, a comprehensive analysis of the travel 

characteristics of Hong Kong residents is needed. The Travel Characteristics Survey 2011 

aimed to collect up-to-date data on travel characteristics and to develop a database for long-

term planning and development. The survey is conducted every 10 years, with the last survey 

conducted in 2002. The data used for this paper is mainly from one of the three main sub-

surveys of TCS, i.e. Household Interview Survey (HIS). This survey included households’ and 

personal information, trip data, and information on vehicle availability. Firstly, the quarters or 

area segments were randomly selected by the Census and Statistics Department (C&SD) of the 

Hong Kong Government. Then all the households were interviewed within the selected quarters 

or area segments. All household members over 2 years old were asked for their daily trips 

records. Among the 2.36 million households in Hong Kong, 35,401 households responded to 

the HIS (1.5% sample size for both household size and individual population).  

 The remainder of this section includes some statistical analysis of the characteristics of 

HWH workers based on the household interview survey. Firstly, an overall profile of these 

workers’ activity participation is presented in Section 2.1. Secondly, Section 2.2 gives a detailed 

analysis of the workers’ departure times to and from work, and Section 2.3 presents the patterns 

of work durations by departure times. 

 

2.1 Overall Profile of Daily Activity Patterns for Workers  

 

Among the sampled data, 39,420 residents were reported as workers from 35,401 households. 

An average of just more than one person per household was found employed workers. Most of 

these workers’ conducted only one out-of-home activities, i.e. work activity. Without loss of 

generality, in this paper, we focused only on workers conducting HWH activity pattern. 30,247 

workers (77% of the total sample, including full-time and regular part-time workers) performed 

the HWH activity-travel pattern. An overall profile of this activity pattern was given in Figure 

1. 



 

 

 

Figure 1. Proportion of activity status for workers 

 

Under this studied pattern, the daily time period for workers was divided into five 

components with the following equation: 

 𝑡 = 𝑡ℎ𝑜𝑚𝑒1 + 𝑡ℎ−𝑤 + 𝑡𝑤 + 𝑡𝑤−ℎ + 𝑡ℎ𝑜𝑚𝑒2 (1) 

   where 𝑡ℎ𝑜𝑚𝑒1, 𝑡𝑤, and  𝑡ℎ𝑜𝑚𝑒2 stand for the time spent at home in the morning, the time 

spent at work, and the time spent at home after work, respectively. 𝑡ℎ−𝑤 and 𝑡𝑤−ℎ are the 

travel times from home to work and from work to home, respectively. 

 In Figure 1, we can see that in the early morning, most workers were still at home. Two 

timings indicating workers changing their activity participation were shown in the figure, i.e. 

8:30 and 19:00. After 8:30 in the morning, more workers had been at work than at home while 

after 19:00, more workers arrived at home. On the other hand, a time window of 2.5 hours was 

recorded from the intersection point (8:30) to the timing of 90% cumulative frequency at work 

(11:00) and that of home arrival was 5 hours (from 19:00 to 23:00). Such statistics indicated 

the AM peak demand was higher and the variation was smaller for home-work travel than work-

home travel. The constraints of on-time arrival for work activity were stronger than home 

arrival. Thus, workers might need to hurry to get to work in the morning and resulted in shorter 

travel time window. 

 

2.2 Departure Time Analysis  

 

An overview of the workers’ daily activity pattern was displayed by a profile of activity status 

in Section 2.1. However, for a more comprehensive understanding of the activity pattern, such 

as the peak hours for traveling to and from work, more analysis had been carried out regarding 

the departure times to and from work and was displayed in this section. 

 In this section, to obtain a more comprehensive understanding of departure times to work, 

we extended the length of the departure time window from 05:00 to 12:00. The distribution was 



 

 

displayed in Figure 2. 

 

Figure 2. Distribution of departure time to work 

 

From the results shown in Figure 2, it was obvious that the peak hour for the home-work 

travel was from 08:00 to 09:00, taking up to 37.5%. It was followed by the hour from 07:00 to 

08:00. Up to 90% of workers departed from home before 10:00. Four major time intervals (from 

06:59 to 09:59 a.m.) took up 87% of the samples of HWH patterns, which provided implications 

for choice set generation in Section 3. The distribution of departure time from work back home 

was analyzed in a similar manner in Figure 3. 

 

Figure 3. Distribution of departure time from work 



 

 

Figure 3 implied that the peak hour for work-home travel was 18:00 to 19:00, during which 

approximately 37.1% of workers left their work for home. Only around 17.5% of workers 

departed for home after 20:00. 

When compared with the distribution of the departure time to and from work, obvious 

differences could be found in travel behavior after the peak hours. In Figure 2, the percentages 

of workers departing for work dropped rapidly from nearly 40% to slightly over 10%. However, 

in Figure 3, the drop was only from 37.1% to 20%. This indicated that unlike hurrying to work 

in the morning, workers had more freedom to decide when to go home and showed a tendency 

to leave later than the scheduled time. The departure time analysis from Figures 2 and 3 was 

consistent with the result of the profile of the activity status in Figure 1. Larger variation for the 

travel time of work-home travel was inferred and workers had greater time elasticity in their 

choice of departure time from work back home. 

 

2.3 Activity Pattern of Work Duration 

 

Because activity duration is an important characteristic of the activity pattern, in addition to the 

proportions of activity status and the departure time distributions, the duration of the activity 

should be analyzed. The result was presented in Figure 4. 

 

Figure 4. Distribution of work duration 

 

Figure 4 gave an overall profile of the work duration for Hong Kong workers. The mean 

work duration was 9.6 hours (including lunch), and more than 50% of the workers worked for 

more than 9 hours. The daily work duration was longer than typical work duration, i.e. 8 hours, 

in most places in the world. This finding showed that activity-travel patterns in Hong Kong 

might differ from other cities in the world. A set of utility functions of activity participation 

should be calibrated with the use of the latest travel survey data for long-term transportation 

planning purpose in Hong Kong. To determine whether a relationship exists between work 

duration and departure time, we analyzed the work durations by departure times in Figure 5. 



 

 

 

Figure 5. Work durations by departures time 

 

From the cumulative frequency of work durations by departure times shown in Figure 5, it 

was found that the earlier the worker departed from home to work, the longer they worked. For 

example, looking at 90% cumulative frequency, the work duration for those workers departed 

between 06:00 and 07:00 a.m. was nearly up to 12 hours. Similar work durations of 11.60, 11.40 

and 11.25 hours were found for workers with departure time periods of 07:00-08:00, 08:00-

09:00, and 09:00-10:00, respectively. The results were also similar for work duration at 50% 

cumulative frequency level. 

 

2.4 Activity Pattern of Travel Time 

 

Sections 2.1-2.3 gave an overview of the daily activity participation status, the distribution of 

departure times to and from work as well as work duration. In this section, we analyzed the 

travel times of the trips of HWH activity-travel pattern. The results were displayed in Table 2. 

The analysis of travel time showed that the more travel time required, the earlier the 

workers departed from home to work. However, the travel time of workers who depart to work 

between 07:00 and 08:00 defied this tendency, perhaps due to heavy traffic conditions during 

the peak hour of home-work travel. However, travel time decreased as the workers put off their 

departure time for home-work travel until the peak hour. The standard deviation decreased as 

the departure time to work was postponed. The same was found on the departure time from 

work back home. On the other hand, the mean travel time (home-work and work –home travel) 

summed up to be around 1.6 hour (47.2 min+50.2 min). This value would be used for the 

calculation of work duration to compare with the estimated value to validate the model 

performance in Section 4. 

 

 



 

 

Table 2. Travel times and work durations by departure times for workers 

 Travel time Work duration 

Overall  

Car 

owning  

Non-car 

owning 

 

Overall 

Car 

owning  

Non-car 

owning  

Departure 

time to 

work 

06:00-07:00 53.5 

(24.2)*  

51.6 

(26.4)  

53.8 

(25.90)  

10.5 

(0.97) 

10.5 

(0.98) 

10.5 

(0.83) 

07:00-08:00 53.6 

(21.6) 

50.4 

(21.6)  

54.3 

(22.78)  

9.9 

(0.84) 

10.0 

(0.84) 

9.9 

(0.72) 

08:00-09:00 43.4 

(16.9)  

40.9 

(17.2)  

44.0 

(18.24)  

9.4 

(0.73) 

9.5 

(0.76) 

9.4 

(0.68) 

09:00-10:00 38.5 

(16.3) 

35.0 

(16.22) 

39.6 

(17.86) 

8.8 

(0.79) 

8.8 

(0.8) 

8.8 

(0.78) 

Average 47.2 

(20.3)  

43.8 

(20.0)  

48.0 

(21.33)  

9.6 

(0.91) 

9.6 

(0.93) 

9.6 

(0.91) 

Departure 

time from 

work 

16:00-17:00 47.3 

(22.0) 

45.7 

(23.6) 

47.7 

(22.0) 

8.4 

(0.86) 

8.2 

(0.98) 

8.4 

(0.83) 

17:00-18:00 50.7 

(21.9) 

46.6 

(21.8) 

51.6 

(21.85) 

8.9 

(0.72) 

8.6 

(0.71) 

8.9 

(0.72) 

18:00-19:00 51.4 

(21.7) 

47.7 

(21.4) 

52.3 

(21.65) 

9.5 

(0.68) 

9.5 

(0.67) 

9.5 

(0.68) 

19:00-20:00 47.6 

(19.9)  

43.9 

(19.6)  

48.5 

(19.92)  

10.4 

(0.77) 

10.5 

(0.72) 

10.4 

(0.78) 

Average 50.2 

(21.3) 

46.3 

(21.1) 

51.1 

(21.30) 

9.6 

(0.91) 

9.6 

(0.93) 

9.6 

(0.91) 

*Standard deviation in parentheses 

  

One another significant finding in Table 2 was the work duration of workers by two groups 

of departure times. The results showed that the earlier they departed to work, the longer they 

stayed at work. In contrast, the workers worked longer if they left work later. 

  In summary, this section made use of the TCS data to give a comprehensive profile of the 

relationships between activity duration, travel time, and departure time for workers in Hong 

Kong. Several insightful findings were noted: (1) the time window of travel time to work was 

shorter than that of from work, (2) the peak hours to and from work were compared, (3) the 

relationship between work duration and departure times to and from work was displayed, and 

(4) the tendency of travel times by departure times was shown. These findings formed the 

foundation for calibrating activity utility functions in line of activity-based approach in the next 

section. 

 

 

  



 

 

3 METHOD OF MODELING AND CALIBRATION OF THE ACTIVITY UTILITY 

FUNCTION 

 

3.1 Activity-Based Modeling 

 

As time allocation for activity participation varies by time of day, the temporal utility function 

tends to be a better option to model the marginal utility by time of day (Lam and Yin, 2001; Fu 

and Lam, 2014). The bell-shaped marginal utility function has widely been used in previous 

papers due to its promising performance for modeling daily activity-travel patterns (Ettema and 

Timmermans, 2003; Ettema et al., 2004; Li et al., 2010; Xiong and Lam, 2011; Fu and Lam, 

2014; Fu et al., 2015). As such, it was adopted in this paper for calibrating the parameters of 

marginal utility function. The formulation of a bell-shape marginal utility function was given 

by: 

 
max

1
( )

exp( ( )) (1 exp( ( ))) i

i i i
i

i i i i

u
u t

t t


 

    

 


      
 (2) 

i stands for the index of activity. γ, α, β, and umax are the parameters of the function. Parameter 

α affects the position of the function along the time axis on when the marginal utility function 

reaches its maximum value. The value of parameter 𝛽  affects the rate of increasing to the 

maximum value and decreasing from that. Parameter 𝛾 affects the symmetry of the marginal 

utility function. The function is symmetric when 𝛾 equals 1, whereas the increasing part before 

the maximum value is greater than the decreasing part when 𝛾  is less than 1. umax is the 

maximum utility of the target activity, serving as the scaling parameter in the function. γ, α, β, 

and umax are the parameters needed to be calibrated. Following Ettema et al. (2004), γ is fixed 

as 1 for better convergence as the calibration of 𝛾  does not result in stable results for the 

parameters. With the utilities specified for each activity, the daily utility can be calculated with 

the following equation: 

 U = ∑ ∫ 𝑢𝑖(𝑡)
𝑡𝑖

𝑒

𝑡𝑖
𝑠𝑖  (3) 

   where 𝑡𝑖
𝑠 and 𝑡𝑖

𝑒 are the start and end times, respectively, of participating in activity i . 

Constant travel times were used for the calibration of the model (Ettema et al., 2004) and 

therefore for the simplicity of computation (the choice probability does not change over the 

alternatives under such simplicity), only the utilities of activities were considered in this paper 

for the calculation. However, further study will consider the utility functions of both activities 

and trips for the evaluation of transport policy. 

Based on the findings from the TCS data, the activity durations varied with the departure 

times. Also, the activity durations varied by different start and end times. Therefore, three 

models with different considerations of start times and end times into the marginal utility 

functions were introduced and calibrated in this paper. 

(1) Model 1: Eq. (2) is set as the marginal utility functions in this model. It is the base 

model for comparison of the improved models, namely, Model 2 and Model 3. 

(2) Model 2: departure time has an obvious effect on activity. Therefore, in Model 2, we 

explicitly considered the effects of the start time of the activity on the utility. Model 2 replaces 

the parameter α with α + 𝑡𝑠 ∙ τ𝑠. 𝑡𝑠 stands for the start time of the activity, and τ𝑠 is the 



 

 

induced parameter to assess the effects of the start time of the. The marginal utility function is 

updated as: 

 
max

1
( )

exp( ( ( ))) (1 exp( ( ( )))) i

i i i
i s s

i i s i i s

u
u t

t t t t


 

      

 


          
 (4) 

(3) Model 3: similar to Model 2, and corresponding to the analysis of the departure time 

from work, Model 3 considers the effects of the end time of the activity and replaces the 

parameter 𝛼  with α + 𝑡𝑒 ∙ 𝜏𝑒 . 𝑡𝑒   is the end time of the activity with 𝜏𝑒  as weighting 

parameter. The updated marginal utility function is: 

 
max

1
( )

exp( ( ( ))) (1 exp( ( ( )))) i

i i i
i e e

i i e i i e

u
u t

t t t t


 

      

 


          
 (5) 

 As the start times and end times of work activity for each individual worker were not 

available, average values were used in our paper. The start times and end times of the activities 

were approximated with the mean arrival and departure times of the home-work and work-

home travels respectively. 

 

3.2 Calibration Method 

 

Departure times were modeled as discrete choices for workers’ choosing to maximize their daily 

utilities. Because the HWH pattern was studied in this paper, only two departure times 

(departure times for home-work travel and work-home travel) were required for each choice 

alternative. Based on our analysis above, the departure time choices were 1-hour intervals 

between 06:00 and 10:00 for home-work travel and between 16:00 and 21:00 for work-home 

travel. The alternatives in the choice set were defined as the combination of two departure times 

(to and from work). Each choice alternative was considered as the combination of one departure 

time alternative for home-work travel and another for work-home travel (e.g., 06:00-07:00 and 

16:00-17:00 or 06:00-07:00 and 17:00-18:00). The probability of departure time choice follow 

the logit choice model as: 

 ,

exp( )

exp( )

k
k n

j

j C

U
P

U





  (6) 

where 𝑘  is the choice of the combination of departure times (departure from home and 

departure from work) from the choice set C, and n indicates the individual n. 𝑈𝑘 is the daily 

utility in Eq. (3) with the departure time choice 𝑘.  

The parameters were calibrated using the maximum likelihood estimation method: 

 ,log = log( )k n

n N

L P


   (7) 

As seen in Eqs. (2), (4), and (5), the utility functions for calibration are nonlinear, and the 

sequential quadratic programming method may be easily stuck in the local maxima as the 

objective function is neither convex nor concave. The genetic algorithm is able to get out of the 

local maxima. Therefore, in this paper, the genetic algorithm was adopted to calibrate 

parameters of the marginal utility functions. The crossover method for applying the genetic 

algorithm is the scattered crossover method. The details of this method were described as 



 

 

follows. 

a). A binary random string was generated with the length of the population length. 

b). From the two Parents (i.e., Parents 1 and 2) chosen for crossover, chose the value from 

Parent 1 if the binary value is 1; otherwise chose the value from Parent 2 to generate the 

Children for the next generation.  

Further details about the key parameter settings were given in Table 3. 

 

Table 3. Parameter settings for genetic algorithm 

Name of 

parameters 

Description Value for parameter 

setting 

Population size The number of sets of parameters in each iteration 200 

Generations The maximum number of iteration before algorithm 

stops 

100*No. of variables 

Elite-count The number of best results that are guaranteed to 

survive in next iteration 

5% of the population 

size 

Crossover fraction The fraction of the population for crossover operation 0.8 

Migration fraction The fraction of the population for migration 

operation 

0.2 

Convergence 

tolerance 

The threshold that the algorithm stops when the 

average change in the goodness-of-fit is less than that 

10-6 

 

 

4 CALIBRATION RESULTS AND DISCUSSION 

 

The calibration results of the three models in Section 3 were displayed in Table 4 and Figures 

6 and 7. In Table 4, the calibration results showed that the parameters were in good performance 

under significance test (all t-test scores were larger than two for 95% confidence level). The 

base model showed that the calibrated results of the parameters positioned the locations of 

marginal utility functions in a reasonable way. The largest value (43.91 compared to 30.73 and 

20.25) of scaling parameters 𝑢𝑚𝑎𝑥 belonged to the marginal utility function of work activity. 

The results accounted for the workers activity changing behavior, which would be discussed 

later. For Model 2 and Model 3, which aimed at investigating the impacts of the start time and 

end time of work activities. Higher impact of work start time than work end time could be 

inferred from the values of corresponding parameters of 𝜏  (0.40 compared with 0.23). 

However, the activity start time and end time should be incorporated into one integrated model 

for studying their impacts to the activity travel behavior together and will be carried out for 

future study. 

 

 

  



 

 

Table 4. Calibration results  
Model 1 t-test* Model 2 t-test Model 3 t-test 

𝛽ℎ𝑜𝑚𝑒1 0.61 

(0.003)** 

130 0.59 

(0.002) 

205 0.55 

(0.002) 

225 

𝛽𝑤𝑜𝑟𝑘 0.52

（0.003） 

160 0.59 

(0.003) 

137 0.72 

(0.001) 

280 

𝛽ℎ𝑜𝑚𝑒2 0.85 

(0.007) 

21.4 0.63 

(0.003) 

123 0.80 

(0.004) 

50 

𝛼ℎ𝑜𝑚𝑒1 4.43 

(0.005) 

886 3.69 

(0.003) 

1230 4.53 

(0.003) 

1510 

𝛼𝑤𝑜𝑟𝑘 13.52 

(0.004) 

3380 9.60 

(0.003) 

3200 9.34 

(0.002) 

4670 

𝛼ℎ𝑜𝑚𝑒2 22.14 

(0.011) 

2012 23.48 

(0.016) 

1467 22.75 

(0.007) 

3250 

𝑢ℎ𝑜𝑚𝑒1
𝑚𝑎𝑥  30.73 

(0.02) 

1486 51.44 

(0.016) 

3152 24.61 

(0.008) 

2951 

𝑢𝑤𝑜𝑟𝑘
𝑚𝑎𝑥  43.91 

(0.02) 

2146 59.99 

(0.026) 

2268 60.00 

(0.014) 

4214 

𝑢ℎ𝑜𝑚𝑒2
𝑚𝑎𝑥  20.25 

(0.04) 

481 32.08 

(0.025) 

1243 18.17 

(0.024) 

715 

𝛾ℎ𝑜𝑚𝑒1 (fixed)   1 - 1 - 1 - 

𝛾𝑤𝑜𝑟𝑘 (fixed)   1 - 1 - 1 - 

𝛾ℎ𝑜𝑚𝑒2 (fixed)   1 - 1 - 1 - 

𝜏𝑠 - - 0.40 

(0.001) 

400 - - 

𝜏𝑒 - - - - 0.23 

(0.0004) 

575 

Initial Log-likelihood -34174.90 -34174.90 -34174.90 

Final Log-likelihood -25682.01 -25455.73 -25484.62 

𝜌2 0.249 0.255 0.254 

* t-tests for 𝛼 and 𝜏 are against 0; others are against 1. 

** Standard deviation in parentheses. 

 

As shown in Figure 6, the marginal utilities in the base model equalized at around 08:30 

and 19:00. These two values indicated that the base model well captured the timings of activity 

changing behavior, i.e. changing from staying at home to work and from work back home. To 

maximize daily activity utilities, workers made their trips around these timings for the next 

activity. More workers had been at work than at home after 8:30 in the morning and more 

workers had arrived at home than stayed at work after 19:00 in the afternoon. The mean duration 

of work activity calculated from these two values was 8.9 hours (excluding the total travel time 

of 1.6 hour), with an 8% error from observed 9.6 hour (TCS statistics). 

 



 

 

 
Figure 6. Calibrated marginal utility functions of Model 1 

 

 

Figure 7. Calibrated marginal utility functions of Model 2 and Model 3 

  

Model 2 and Model 3 incorporated the activity start time and end time into the model, and 

parameter τ indicated the effects of these timings on the position of the corresponding marginal 

activity utility functions. In our study, the times that matched the maximum utilities of home 

activity in the morning shifted about 40 minutes earlier. The value of τs indicated that the 

position of the marginal utility function shifted 0.4 minute in every minute change in work start 

time. The final log-likelihood showed better consistency with the sampling data. 

 The validation result was shown in Figure 8. The value of R2 between the estimated 

probability and the observed probability was 0.9181. This result showed the good performance 

of predicting the departure time choice behavior of HWH workers. 

 



 

 

 

Figure 8. The validation of the calibrated probability of departure time choice 

  

 

5 CONCLUSIONS 

 

In this study, we used the data of TCS 2011 in Hong Kong to model the choice behavior of 

HWH activity-travel patterns. In particular, the relationships between work durations and travel 

times between home and work were analyzed. Based on the traditional household interview 

survey data, some statistical analysis was carried out to study the characteristics of these HWH 

activities. We formulated an activity-based model to quantify the marginal utility functions of 

work/home activities of HWH pattern workers. Some statistical tests were shown to report the 

goodness-of-fit to examine the performance of the calibrated model.  

 Overall, 30,247 workers, up to 77% of the sampled population of workers from the TCS 

data, were found to have the daily HWH pattern. Figure 1 shows a significant bell-shape pattern 

for the daily HWH activities. This served as a justification to choose the bell-shape marginal 

utility function, i.e. Eq. (1), for modeling the utility functions of the HWH activities. We 

assumed workers were homogenous in activity-travel choice behaviors so that Eq. (1) could be 

adopted to fit the curves in Figure 1. However, it could easily be extended to the cases with 

heterogeneous workers with different activity-travel choice behaviors, such as workers in car-

owning and non-car-owning households.  

 Second, the TCS data revealed that the travel time to and from work obviously affected the 

departure time and consequently affected the duration of work. Departure time choice was 

explicitly modeled in this paper. We assumed that workers select departure times to and from 

work so as to maximize their daily utilities. Their choices determined how much utility they 

could obtain from these work and home activities. This simplified the calibration process of the 

model, as workers made departure decisions rather than making decisions continuously at every 



 

 

time interval throughout the day, saving substantial computation time for model calibration 

(around 0.5 hour versus 5.3 hours). 

 Third, we explicitly modeled the start time and end time of work activity, τs and τe, where 

these two variables determined the exact duration of work activity. The use of τs and τe involved 

shifting the position parameter α to infer whether the activity start time and end time affected 

people’s activity-travel choice behavior. When the model is applied for transport policy 

evaluation, adjustment of activities’ start or end times, such as a flexible work-hour program, 

could be applied to evaluate the performance of the transportation network (level of service, 

such as travel time/congestion level; see Fu and Lam, 2014). 

 The calibration results indicated that the model parameters were statistically significant. 

The validation results showed the R2 of 0.9181 between the estimated probability and observed 

probability of departure time choice behavior of HWH activity-travel pattern. An 8% error of 

mean duration of work activity was estimated. The marginal utility functions can well capture 

the timings of activity changing behavior (i.e. 08:30 and 19:00) from home to work and from 

work to home. These results illustrated that the marginal utility function of HWH activities by 

time of day can be calibrated satisfactorily with traditional household interview survey data 

(TCS). With these fine-tuned parameters, we could perform a more detailed analysis using 

activity-based network equilibrium models (e.g., Lam and Yin, 2001; Ouyang et al., 2011; Fu 

and Lam, 2014) for long-term transportation planning. 

 We also observed that travel times differed significantly across various departure time slots 

for HWH activities. A monotonic trend of work duration was found: those who departed later 

from home to work had comparatively shorter work durations, whereas those who departed 

later from work to home had longer work durations. Those who had lower household incomes 

may live farther from work (e.g., CBD) and therefore needed to depart earlier for travel, and 

those types of work were inclined to include longer work hours (e.g., lower income and longer 

work duration for labor-intensive job). 

For a more comprehensive study on the activity-travel choice behavior using the activity-

based approach, some issues remain for further studies. First, because Table 2 revealed 

differences between the household groups with and without private cars, it would be interesting 

to quantify the impacts of car ownership on activity-travel choice behavior. In fact, in order to 

better understand the activity-travel choice behavior, further investigation of the effects of 

socioeconomic variables should be carried out to draw more insightful conclusions. Explicit 

investigation of these effects would give us more detailed insights into workers’ behavior for 

HWH activities, such as examining the impacts of different workers (by their household 

incomes, as well as other characteristics such as household size) on their choices of departure 

times to and from work.  

Second, although the model proposed in this paper considered the start time and end time 

of activities, an integrated model should be explored to analyze the joint impacts of activity 

start time and end time within one model. The proposed model enables us to include these 

parameters with a high degree of tractability.  

Finally, the calibrated model in the paper should be applied for long-term travel demand 

forecasting and transport policy evaluation using the activity-based network equilibrium 

approach. With this, we can investigate the change of activity-travel choice behaviors: 



 

 

earlier/later arrival/departure times, longer/shorter activity duration or even stimulating/ 

prohibiting the demand for activities and thus the performance of the transportation networks. 

 

 

ACKNOWLEDGEMENTS 

 

This work was supported by a Postgraduate Studentship and research grants from the Research 

Grants Council of the Hong Kong Special Administrative Region to the Hong Kong Polytechnic 

University (Project Nos. PolyU 5181/13E and 152057/15E) and the National Natural Science 

Foundation of China (Nos. 71601052 and 71471013). 

 

 

REFERENCES 

 

Adler, T., Ben-Akiva, M. (1979) A theoretical and empirical model of trip chaining behavior. 

Transportation Research Part B: Methodological, 13(3), 243-257. 

Antoniou, C., Ben-Akiva, M., Bierlaire, M., Mishalani, R. (1997) Demand simulation for 

dynamic traffic assignment. Proceedings of the 8th IFAC Symposium on Transportation 

Systems, Chania, Greece. 

Arentze T.A., Timmermans, H. (2004) Moving Albatross to practice: refinements. Unpublished 

Report, EIRASS, Eindhoven University of Technology. 

Axhausen, K.W., Gärling, T. (1992) Activity-based approaches to travel analysis: conceptual 

frameworks, models, and research problems. Transportation Reviews, 12(4), 323-341. 

Ben-Akiva, M., Lerman, S. R. (1985) Discrete Choice Analysis: Theory and Application to 

Travel Demand. MIT Press, Cambridge. 

Bhat, R., Koppelman, S. (2003) Activity-based modeling of travel demand. Handbook of 

Transportation Science. International Series in Operations Research & Management 

Science, Volume 56, Part 2, 39-65. 

Bowman, J. (1998) The Day Activity Schedule Approach to Travel Demand Analysis. Ph.D. 

Thesis, Massachusetts Institute of Technology, USA. 

Bowman, J., Ben-Akiva, M.E. (2000) Activity-based disaggregate travel demand model system 

with activity schedules. Transportation Research Part A: Policy and Practice, 35, 1-28. 

Ettema, D., Timmermans, H. (2003) Modeling departure time choice in the context of activity 

scheduling behavior. Transportation Research Record: Journal of the Transportation 

Research Board, 1831, 39-46. 

Ettema, D., Ashiru, O., Polak, J. (2004) Modeling timing and duration of activities and trips in 

response to road-pricing policies. Transportation Research Record: Journal of the 

Transportation Research Board, 1894, 1-10. 

Fu, X., Lam, W.H.K. (2014) A network equilibrium approach for modelling activity-travel 

pattern scheduling problems in multi-modal transit networks with uncertainty. 

Transportation, 41, 37-55. 

Fu, X., Lam, W.H.K., Xiong, Y. (2015) Calibration methods and results for activity-travel 

scheduling models. Journal of the Eastern Asia Society for Transportation Studies, 11, 640-

652. 



 

 

Hagerstrand, T. (1970) What about people in regional science? Papers and Proceedings of the 

Regional Science Association, 24, 7-24. 

Joh, C.H., Arentze, T.A., Timmermans, H. (2002) Modeling individuals’ activity-travel 

rescheduling heuristics: theory and numerical experiments. Transportation Research Record, 

1807, 16-25. 

Kitamura, R. (1988) An evaluation of activity-based travel analysis. Transportation, 15, 9-34. 

Lam, W.H.K., Yin, Y. (2001) An activity-based time-dependent traffic assignment model. 

Transportation Research Part B: Methodological, 35, 549-574. 

Li, S., Carrion, C., Abou-Zeid, M., Ben-Akiva, M. (2013) Activity-based travel demand models 

for Singapore. Proceedings of the 18th International Conference of Hong Kong Society for 

Transportation Studies, 323-330. 

Li, Z.C., Lam, W.H.K., Wong S.C., Sumalee, A. (2010) An activity-based approach for 

scheduling multimodal transit services. Transportation, 37, 751-774. 

Lowry, I.S. (1964) A Model of Metropolis. Rand Corporation, Santa Monica. 

Martínez, F.J. (1996) MUSSA: a land use model for Santiago City. Transportation Research 

Record, 1552, 126-134. 

McFadden, D. (1973) Conditional logit analysis of qualitative choice behavior. In Zarembka, 

P. (ed.), Frontiers in Econometrics. Wiley, New York, 105-142.   

Miller, E., Roorda, M. (2003) Prototype model of household activity-travel scheduling. 

Transportation Research Record: Journal of the Transportation Research Board, 1831, 

114-121. 

Mitchell, R., Rapkin, C. (1954) Urban Traffic: A Function of Land Use. Columbia University 

Press, New York.  

Ouyang, L., Lam, W.H.K., Li, Z., Huang, D. (2011) Network user equilibrium model for 

scheduling daily activity travel patterns in congested networks. Transportation Research 

Record: Journal of the Transportation Research Board, 2254, 131-139. 

Rasouli, S., Timmermans, H. (2014) Activity-based models of travel demand: promises, 

progress and prospects. International Journal of Urban Sciences, 18(1), 31-60. 

Recker, W.W. (1995) The household activity pattern problem: general formulation and solution. 

Transportation Research Part B: Methodological, 29, 61-77. 

Xiong Y.L., Lam, W.H.K. (2011) Modelling within-day dynamics in activity scheduling: a 

Markov decision process approach. Journal of the Eastern Asia Society for Transportation 

Studies, 9, 452-467. 

 




