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Abstract: Consider a congested urban logistics network with one depot and many 
geographically dispersed retailers facing demands at constant and deterministic rate over a 
period of planning horizon, but the lead time is variable due to traffic congestion. All stock 
enters the logistics network through the depot and from where it is distributed to the retailers 
by a fleet of vehicles. In this paper, we propose a new class of strategies for giving the optimal 
inventory replenishments for each retailer while the efficient delivery design is taken into 
account such that the minimization of total inventory cost and transportation cost is achieved. 
A mathematical program is formulated for this combined problem and a new class of iterative 
solution strategies is developed. Numerical computations are conducted and the proposed 
strategies obtain better results in comparison with other alternative with reasonable 
computational efforts. 
 
Key Words: Inventory routing problem, Inventory allocation, Vehicle routing problem, Urban 
logistics network, Mathematical program 
 
 
1. INTRODUCTION 
 
Consider an urban logistics network, the role of logistics management is changing. 
Companies are recognizing that the value for customers can be realized through a kind of 
integrated service of effective logistics management and product availability. For such an 
integrated kind of service, inventory allocation and vehicle routing are two important and 
closely interrelated decisions that arise in logistics management contexts, which have been 
investigated extensively as the inventory routing problem. (Golden, B. et al., 1984, 
Federgruen and Zipkin, 1984, Chien, T. et al., 1989, Dror, M. et al., 1985, Dror and Ball, 1987, 
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Anily and Federgruen, 1990, Bard, J. et al., 1998, Chan, L.M.A. et al., 1998, Campbell, A. et 
al., 1998 and Jaillet, P. et al., 2002). 
 
The inventory routing problem (IRP) addresses the coordination of inventory replenishment 
and transportation. The IRP refers to the situation where the inventory replenishment at a 
number of locations is controlled by a central manager with a fleet of vehicles. A good 
distribution strategy is developed for which the minimization of distribution cost is achieved 
while the demands for retailers are satisfied without stock-out occurrence during the period of 
planning horizon. Regarding an urban logistics network, traffic congestion is often neglected 
in analyzing the replenishment policies for the IRP and therefore constant and static demand 
rates are assumed to hold for retailers during planning horizon. (Chien, T. et al., 1989, Dror, 
M. et al., 1985, Chan, L.M.A. et al., 1998 and Campbell, A. et al., 1998) However, as it has 
been noted by Campbell, A. et al. (1998) that travel times and the corresponding costs are 
severely affected by traffic conditions of logistics network and thus for the sake of realistic 
situations, more attentions need to focus on the variable nature of the transportation times 
when modelling the combined problem.  
 
In this paper, consider an urban logistics network with one depot and many geographically 
dispersed retailers facing external demands at constant and deterministic rate over a period of 
planning horizon with variable lead-times, where all stock enters the logistics network 
through the depot and from where it is distributed to the retailers by a fleet of vehicles. In this 
urban logistics network, it is supposed that all stock is kept at the retailers and no stock is kept 
at the depot. We propose a new class of strategies for giving the optimal inventory 
replenishments for each retailer while the efficient delivery design is taken into account. The 
objective of the proposed new class of inventory replenishment strategies is to pursue the 
minimization of total inventory cost and transportation cost over a period of planning horizon 
while variable lead-times are taken into account. A mathematical program is formulated for 
this combined problem where total inventory replenishment cost is expressed as the sum of 
inventory holding costs and procurement costs for all retailers provided stock-out at any 
retailer is not allowed.  
 
Regarding the inventory holding costs, contrary to conventional design, e.g. the Economic 
Order Quantity (EOQ), we consider the lead-time a mapping of the result of the vehicle 
routings, which is difficultly expressed as a closed form due to the NP hard nature of vehicle 
routing problems, and thus the objective function at retailers is to minimize the total inventory 
management costs with respect to inventory replenishment quantities and vehicle routings. 
For the combined inventory replenishment and vehicle routings problem, it becomes a 
non-convex problem in our mathematical programming formulation in the following ways. 
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Firstly, for the inventory cost function it is supposed that the lead-time of on-route orders is 
dependent on the results of vehicle routings and thus the lead-time demand is not a 
deterministic item as it appeared in the classical Economic Order Quantity (EOQ) model, but 
an implicit form of the results of vehicle routings. Secondly, regarding the computation for 
vehicle routings, the results are strongly influenced by the results of inventory replenishments 
once they have been determined by the mathematical model. A new class of iterative solution 
strategies is developed in simultaneously solving the combined problem. Numerical 
computations have been conducted on a series of experimental scenarios. In comparisons with 
the previous method, for example, separately solving the two independent problems of 
optimal inventory replenishments and vehicle routings, where the lead-times are regarded as 
fixed values, the proposed new class of solution strategies has obtained better results either in 
decreasing the transportation costs or in decreasing the inventory management costs over the 
period of planning horizon with reasonable computational efforts.  
 
The remainder of this paper is organized as follows. In next section, relevant literature in the 
field of inventory allocation and vehicle routings is briefly reviewed. Mathematical programs 
for combined problem of the inventory routing problem with variable lead-time are 
formulated in section 3 together with the solution procedures. A new class of implementation 
heuristics for the inventory routing problem is also addressed in this section. In section 4, 
numerical computations for the proposed new class of solution strategies for the inventory 
routing problem are conducted at two randomly generated instances of the problem. 
Computational results for demonstrating the effectiveness of the proposed heuristics are given 
as well. Good results are obtained especially when comparing with other alternative to solving 
the inventory and routing problem, e.g. separately solving the inventory allocation and vehicle 
routing problem with fixed lead times. Conclusions and further research opportunities will be 
marked in section 5. 
 
 
2. LITERATURE REVIEW 
 
Golden, B. et al.(1984) are the first ones of those who investigated the interrelated problem of 
inventory allocation and vehicle routing problems. For an energy-products company that 
distributes liquid propane to its customers, Golden, B. et al. proposed a simulation model 
SNEW to determine the set of which customers should be serviced, the corresponding amount 
to supply the selected customers and the way in how to route the vehicles to deliver the 
allocated amounts. As it was reported, the simulation experiments showed good results with 
improvement of 8.4% in production, reduced the stock-out by 50% and total cost by 23%. 
 

Journal of the Eastern Asia Society for Transportation Studies, Vol. 6, pp. 3038 - 3051, 2005

3040



Federgruen and Zipkin (1984) approached the inventory routing problem as a special case of 
vehicle routing problem for a single day period. They considered stochastic demands and 
non-linear inventory costs, and suggested a non-linear integer programming formulation for 
the inventory and routing problem. The non-linear integer programs has the property that for 
any assignment of customers to routes, the problem is decomposed into an inventory 
allocation problem and a number of Traveling Salesman Problem (TSP). Starting with an 
initial inventory allocation, Federgruen and Zipkin iteratively applied interchange heuristics 
for constructing a better set of traveling salesman tour and an optimization procedure for 
improving the inventory allocation. The algorithm procedure proposed by Federgruen and 
Zipkin terminates when no more improvement in the total inventory and routing costs is 
possible. The results show that about 6-7% savings in operating costs can be achieved by 
using the combined approach for the inventory allocation and vehicle routings when 
compared to the conventional separately solutions. 
 
Chien, T. et al. (1989) also developed a single day model of the inventory and routing 
problem and proposed a mixed integer programming model, which attempts to find a less 
myopic solution by passing inventory information from one day to the next. A Lagrangian 
based procedure was proposed to generate the upper bounds and lower bounds for the feasible 
solutions to the inventory and routing problem and good results have shown the effectiveness 
of the proposed procedure. 
 
For the inventory allocation and vehicle routing problems over a long time period, Dror and 
Ball (1987) proposed an approach to take into account what happens after the single day 
planning period. Dror and Ball gave a reduced procedure for which the long-term effect of the 
problem can be brought into a short-term period such that long-term delivery cost is 
minimized while no customer runs out of stock at any time over the planning horizon of 
interest. Dror and Ball also applied the solution heuristic developed by Dror, M. et al. (1985) 
over the short-term period to the long-term one and numerical results have been reported. 
Anily and Federgruen (1990), on the other hand, took a look at minimizing long run average 
transportation and inventory costs by determining long-term routing patterns. Anily and 
Federgruen analyzed fixed partition policies for the inventory routing problem with constant 
deterministic demand rates and an unlimited number of vehicles. The routing patterns are 
determined by using a modified circular partition scheme. After the customers are partitioned, 
customers within a partition are distributed into regions so as to make the demand of each 
region. A customer may appear in more than one region, but a certain percent of customer’s 
demand is allocated to each region. When one customer in a region gets a visit, all customers 
in the region are visited. A lower bound for the long run average cost is also determined by 
which the performance of the determined routing patterns can be evaluated. Following the 
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fixed partition policy of Anily and Federgruen, Chan, L.M.A. et al. (1998) continually 
analyzed the zero-inventory ordering policies for the inventory routing problem and derived 
asymptotic worst-case bounds on performance evaluation for setting the replenishment 
policies to minimize long-term average costs of the IRP. 
 
Bertazzi, L. et al. (2002) considered a deterministic model of the inventory and routing 
problem with a single capacitated vehicle over long-term period. Each customer has a 
specified minimum and maximum inventory level. Bertazzi, L. et al presented a heuristic to 
determine the vehicle route at each discrete time point, while an order-up-to inventory policy 
is supposed to adopt. Various objective functions from different levels of decision makers are 
considered and numerical computations on a set of randomly generated problem instances 
have been conducted. 
 
 
3. THE INVENTORY AND ROUTING PROBLEM FORMULATION 
 
In this section, a mathematical program is given for the inventory routing problem with 
variable lead-times. First, notation used throughout this paper is given below. 
 
 
3.1 Notation 
 
K : number of vehicles. 
n : number of locations, index from 1 to n ; index 0 denotes the central depot. 
Q : total amount of product available at the central depot. 

kb : capacity of vehicle k . 
A : ordering cost. 

iu : retailer i  demand rate. 
h : inventory carrying cost. 

ijkx : 1 if vehicle k  travels directly from location i  to j ; 0 otherwise. 

iky : 1 if delivery point i  assigned to route k ; 0 otherwise. 

iw : amount delivered to location i . 

iτ : lead time at location i . 
 
 
3.2 Problem Formulation 
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Let α  be a converting factor from Euclidean distance to monetary unit and let the inventory 
cost at retailer i , denoted by )( ii wq , the inventory and routing problem formulation can be 
addressed as follows.  
IRP 
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Consider a fixed route k , retailer i  with 1=iky , let { }1: == ikk yiY  the problem in 
(1)-(11) can be decomposed as the following two closely related problems: the inventory 
allocation problem and a number of traveling salesman problems (TSP). For the inventory 
allocation problem, it can be expressed as follows. 
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Therefore the inventory allocation problem in (12-15) can be re-written as follows. 
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where { }1: == ikk yiY . For a fixed kY , Kk ,...,1= , consider kx  solves TSP( kY ), which 
can be expressed as follows. 
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In the inventory allocation problem (18-21), the lead time at retailer i , ),( yxiτ  is 
determined by solving the vehicle routing problem (VRP) given by iw , which can be 
expressed as follows.  
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For the inventory allocation problem IA-1, IA-2, IA-3, since the lead time τ  is determined 
by the vehicle routing problem (27-34), which is implicitly expressed as a VRP solution and is 
not a closed form, which can be directly solved. For the traveling salesman problem and the 
vehicle routing problem, the inventory replenishment amounts, w , are not determined 
without solving the inventory allocation problems. It has been noted by Federgruen and 
Zipkin (1984), and Chien, T. et al. (1989), that exact solution for the inventory routing 
problem can be difficult to find due to the interrelationships between inventory 
replenishments and routing patterns. In the following section, we propose a new solution 
procedure to deal with such closely related problems and develop a new class of strategies 
with tractable computation efforts as demonstrated in the later sections. 
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3.3 Solution Procedure 

Let { }KkYY k ,...,1, == , { }KkXX k ,...,1, == , { }KkWW k ,...,1, ==  where ∑
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∈

=
kYi

ik ττ . The solution set of the IA-3 problem is denoted by 

),(3 τYI  and thus ),(3 τYIW ∈ , and solution set of IA-2 problem is denoted by ),(2 kkYI τ  
and thus ),(2 kkk YIW τ∈ . The solution set of TSP is denoted by ),( kk WYTSP and 
thus ),( kkk WYTSPX ∈ . The solution set of VRP is denoted by )(WVRP , and thus 

)(WVRPY ∈ , and )(WVRP∈τ . The proposed solution procedure for the variable lead-time 
inventory routing problem in (1-11) can be conducted as follows. Let superscript t  denote 
the replenishment cycle index. 
 
STEP0. Given a set of routing patterns, )(tY , and initial lead-times )(tτ . Set index 0=t . 
STEP1. Solve the inventory allocation problem IA-3 in (18-21) and find the optimal inventory 

replenishment )(tW , such that ),(3 )()()( ttt YIW τ∈ . Also solve the traveling 
salesman problem TSP in (22-26) and find the sequence of visiting orders to each 

retailer, )(t
kX , on a given route k  such that ),( )()()( t

k
t

k
t

k WYTSPX ∈ , Kk ,...,1= . 

STEP2. Improve )(t
kX , for Kk ,...,1=  by TSP-MOD procedure. 

STEP3. Solve the vehicle routing problem VRP in (27-34) and find a new set )1( +tY  such that 
)( )()1( tt WVRPY ∈+  via the VRP-COS procedure. Update the new lead-time set 

)1( +tτ  by multiplying the converting factor α  such that )( )()1( tt WVRP∈+τ . Set 
1+← tt . 

STEP 4. Termination test.  For a given value, MAXT , if MAXTt =  then stop; otherwise return 
STEP1. 

 
 
3.4 Implementation heuristic 
 
In this section, a new class of implementation heuristics for conducting STEPs 1-3 in the 
solution procedure is developed, for which a better mutually consistent solutions for problem 
IA-1 and VRP can be found in comparison with two individually separate solutions. Consider 
the inventory allocation problem IA-2 with zero lead-time, it becomes a classical type of 
Economic Ordering Quantity (EOQ) problem. Suppose in each period of inventory 
replenishment cycle, the inventory replenishment amount is determined by the lead-time 
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demand where the variable lead-time is the result of vehicle routings from the previous 
replenishment cycles. For this implementation heuristic, we consider a smoothing forecast for 
current lead-time by conducting the moving average method of the previous lead times in the 
following way. For each retailer i , ni ,...,1= , we have 

)()( t
ii

t
i uw τ=                             (35)  

A smooth forecast of the lead-time, )(t
iτ , by conducting the moving average method over 

N replenishment cycles can be expressed as  

1),...(1 )1()1()()( ≥+++= +−− t
N

Nt
i

t
i

t
i

t
i ττττ                (36) 

On the other hand, for the traveling salesman problem, a tour construction is considered by 
using the sweep method and the improvement heuristic, TSP-MOD, which is conducted as 
follows. 
 
TSP-MOD 
 
T-STEP1. For a given route k , construct an initial tour, kX , by sweep method such that each 

retailer with replenishment )(t
iw  within this tour is serviced and the corresponding 

route distance is minimized. 
T-STEP2. Improve current tour kX  by interchange visiting retailers such that a lower route 

distance can be achieved by 2-opt or 3-opt procedure. 
T-STEP3. Iterate T-STEPs 1-2 until no improvement is achieved. 
 
For the vehicle routing problem, when taking into vehicle capacity into account, it can be 
regarded as multiple TSPs, which can be heuristically solved as follows. 
 
VRP-COS 
 
V-STEP1. Conduct TSP-MOD for each fixed route k .  
V-STEP2. Check the feasibility of each routing k , Kk ,...,1= . If route k ′  violate the 

feasibility of VRP in (28-34), remove the visiting retailer by inventory 
replenishment in increasing orders until the feasibility is satisfied.  

V-STEP3. Make new routes k ′′  to include the removed retailers and satisfy the feasibility 
test. 

V-STEP4. Improve current routes by using the branch interchange technique conducted in the 
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following composites. 
 V-COS1. Use 2-opt first to interchange visiting retailers within the same tour until no 

improvement in minimizing routing distance. 
 V-COS2. Use 3-opt secondly to interchange visiting retailers within the same tour until no 

improvement in minimizing routing distance. 
 V-COS3. Use 2-opt first to interchange visiting retailers across different tours until no 

improvement in minimizing routing distance. 
 V-COS4. Use 3-opt secondly to interchange visiting retailers across different tours until no 

improvement in minimizing routing distance. 
V-STEP3. Iterate procedures for V-COS1-4 until no improvement is achieved. 
 
 
4. NUMERICAL COMPUTATIONS 
 
In this section, the proposed new class of implementation heuristics given in section 3 is 
conducted at two randomly generated instances of the inventory and routing problems. 
Consider the instances of interest, the retailers are scattered around the X-Y coordinates, 
where the integer points ]100,100[−∈X  and ]100,100[−∈Y . The daily demand rate, 

niui ,...,1, = , is set as 5 items. The ordering cost, A, is set $1200 and the inventory cost, h, set 
as $1.0 per day per item. The converting factor from the Euclidean distance to monetary unit, 
α , is set $150 per unit distance. For the first instance, the number of retailers is 12 and for the 
second instance, the number of retailers 30. The number of vehicles is 10 and capacity 3900 
units. The depot capacity is set as 50000 units. 
 
Regarding the time periods of planning horizon, 10 replenishment cycles are taken into 
account, i.e. 10=MAXT . The performance indices are expressed as three kinds of costs, that is, 
the transportation cost evaluated from the vehicle routing problem, the inventory cost 
evaluated from the inventory allocation problem and the total cost, which is the sum of the 
transportation and inventory costs. Four kinds of stock policies are analyzed in this numerical 
experiment, which are generated from equations (35-36). Consider the conventional approach 
in solving the inventory allocation and vehicle problems, an EOQ-based stock policy is used 
where the lead-time is regarded as fixed and accordingly the inventory allocation and vehicle 
routing problems are separately solved iteratively until the termination condition holds. 
 
Computational results are summarized in Tables 1-2. For the first instance, as it seen from 
Table 1, the proposed class of implementation heuristics, N=1,2,3,4, all outperformed the 
EOQ-based stock policy by yielding approximately 10% improvement in the transportation 
cost and in the inventory cost with 11.6% improvement. For the total cost of the sum of the 
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transportation and inventory costs, the proposed class of implementation heuristics achieved 
nearly 12% improvement over that did the EOQ-based stock policy. For the second instance, 
n=30, as it seen from Table 2, again, the proposed class of implementation heuristics 
outperformed the conventional EOQ-based stock policy approximately 1.36% in the total cost, 
and achieved approximately 2% improvement in the inventory cost. However, as far as the 
transportation cost is concerned, in the second instance, the EOQ-based stock policy achieved 
slightly better performance by 0.17% than the proposed class of implementation heuristics, 
when N=3,4. Numerical experiments are conducted on Sun SPARC machine and coded by 
C++ computer language. Total computation times are within 1 minute of CPU time. 
 
 

Table 1. Cost Comparison For Various Stock Policies When N=12 
stock policy 

Cost 

EOQ-based N=1 N=2 N=3 N=4

Transportation 

cost 

226410 199991 202930 200905 200905

Inventory cost 386400 348188 336287 336691 335705

Total cost 612810 548179 539217 537596 536610

 
 

Table 2. Cost Comparison For Various Stock Policies When N=30 
stock policy 

Cost 

EOQ-based N=1 N=2 N=3 N=4

Transportation 

cost 

299966 299689 299800 300477 300600

Inventory cost 820000 814384 809319 806753 804083

Total cost 1119966 1114073 1109119 1107230 1104683

 
 
5. CONCULSIONS AND DISCUSSIONS 
 
In this paper, we considered a combined problem of the inventory allocation and vehicle 
routing problems for one depot and many geographically dispersed retailers when variable 
lead-times have been taken into account in congested urban logistics networks. Mathematical 
programs were given for this combined problem and the solution procedure was developed to 
heuristically solve this complicated problem due to the nature of vehicle routing problem and 
variable lead-time demands. Numerical experiments have been conducted at two randomly 
generated inventory routing problems. The proposed class of implementation heuristics was 
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carried out where the proposed stock policies gave good results by yielding relatively lower 
inventory costs in comparison with another stock policy. Consider the variations of instances 
for the inventory routing problem, more computations are being undertaken in order to 
investigate the efficiency and robustness of the proposed solution procedure. On the other 
hand, consider the retail industry now facing demand chain management, investigations may 
continue to be undertaken for simultaneously taking both side’s benefits, i.e. the supply side 
and demand side, and discuss the appropriateness of cost minimization in our future work.   
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