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Abstract: Queue spillback is a common phenomenon in congested transportation networks. 
Nevertheless, traditionally, dynamic traffic assignment (DTA) problems are developed with 
the point-queue concept in which queue spillback is not captured. Indeed, one recent focus in 
DTA research is to capture this phenomenon and develop solution methods for the physical-
queue DTA formulations. However, the properties of these problems, which have important 
implications on the theoretical advances and computational issues on transportation planning 
and operations, are not well recognized and understood. This paper summarizes the properties 
of physical-queue DTA, compares those with point-queue DTA, and discusses their 
implications. In particular, the interrelationship among properties including First-In-First-Out, 
causality, travel-time-link-flow consistency, and queue spillback are emphasized in this paper.  
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1. INTRODUCTION 

The properties of dynamic traffic assignment (DTA) have important implications on the 
theoretical advances and computational issues on transportation planning and operations. 
These properties depend strongly on the two components of DTA: the travel choice principle 
and the traffic-flow component. The travel choice principle models travellers’ propensity to 
travel, and if so, how they select their routes, departure times, modes, or destinations. In 
making such choices, travel time is one important element of their considerations. The travel 
choice principle can be formulated as a variational inequality problem, and it is established 
that the existence of solutions requires the mapping function of the problem to be continuous 
(Theorem 1.4 in Nagurney, 1993) whereas the uniqueness of solution further requires the 
mapping function to be strictly monotonic (Theorem 1.8 in Nagurney, 1993). Therefore, 
solution existence (uniqueness) requires route travel times to be continuous (strictly 
monotone) with respect to route flows.   

The traffic-flow component depicts how traffic propagates on a transport network and hence 
governs the network performance in terms of travel time.  Previous efforts focused on 
ensuring 
1) flow conservation (the rate change of the number of vehicles is the difference between the 

link inflow and outflow at that time) and  
2) time-flow consistency, the one-to-one mapping between traffic flow and traffic time.  
These two considerations make the traffic flow model theoretically sound. Capturing actual 
traffic behaviour in the traffic-flow  component is  one  important  current  research  direction. 
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Indeed, past efforts have focused on capturing the following traffic behaviour:  
1) First-in first-out (FIFO) (e.g., Tong and Wong, 2000; Huang and Lam, 2002): FIFO on the 

link level means that users who enter the link earlier will leave it sooner;  
2) Causality (e.g., Friesz et al., 1993; Ran and Boyce, 1996.): Causality means that the speed 

and travel time of a vehicle on a link is only affected by the speed of vehicles ahead, and;  
3) Queue spillback (e.g., Daganzo, 1994, 1995a; Kuwahara and Akamatsu, 2001; Rubio-

Ardanaz et al., 2001; Szeto and Lo, 2004): Queue spillback refers to the end of queue 
spilling backwards in the network. 

The above traffic behaviour governs the properties of DTA formulations such as the 
properties of route and origin-destination (OD) costs (e.g., continuity of route and OD costs), 
as well as solution properties (e.g., existence and uniqueness of solutions). However, these 
properties are not fully addressed in the literature. In addition, the interrelationship among 
FIFO, time-flow consistency, causality, and queue spillback are not well understood in the 
literature. 
 
This paper addresses the properties of DTA with and without physical queue considerations, 
summarizes their similarities and differences, discusses their implications on theoretical 
advances and computational issues on planning and operations, and finally suggests future 
research directions to these two aspects. In particular, FIFO and causality are examined in 
details, and their interrelationship with time-flow consistency and queue spillback. The main 
finding is that the four considerations in the traffic flow model, namely causality, FIFO, time-
flow consistency, and queue spillback are independent; Capturing one in the model does not 
imply capturing the other. This paper also highlights the key difference between the point-
queue and physical-queue representations: the latter includes storage capacity in the resultant 
formulation to capture the effect of queue spillback. 

The outline of this paper is as follows: Section 2 describes the five considerations in the 
traffic-flow component considered in the literature. Section 3 reviews the existing analytical 
formulation approaches for the traffic-flow component. Section 4 discusses the properties of 
DTA. Finally, section 5 gives concluding remarks. 

 
2. FIVE CONSIDERATIONS IN THE TRAFFIC-FLOW COMPONENT 

This section describes five independent considerations in the traffic-flow component: flow 
conservation, First-In-First-Out (FIFO), time-flow consistency, causality, and queue spillback. 
To facilitate discussion, we here introduce some notation and equations: 

( )au ω   inflow rate for link a at time ω  (in vehicles per unit time) 

( )av ω   outflow rate for link a at time ω  (in vehicles per unit time) 

( )aU ω  cumulative inflow up to time ω  

( )aV ω   cumulative outflow up to time ω    

( )aτ ω   travel time on link a at time ω   

( )ax ω   number of vehicles on link a at time ω  (or the link occupancy)  
 
By definition, we have: 

 ( )aU ω  = 
 

 0
( )au s ds

ω

∫ , or  ( ) ( )a
a

U
u

ω
ω

ω
∂

=
∂

, and (1) 
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 ( )aV ω  = 
 0

( )av s ds
ω

∫ , or ( ) ( )a
a

V
v

ω
ω

ω
∂

=
∂

. (2) 

 
2.1 Flow Conservation 

The flow conservation condition requires the number of vehicles on a link (link occupancy) at 
a particular time to be equal to the total inflow at the entry of that link at that time minus the 
corresponding total outflow at the exit. Mathematically, it can be expressed as: 
 ( )ax ω = ( )aU ω - ( )aV ω .  (3) 
The above equation means that graphically, the vertical distance between the cumulative 
inflow and outflow at time ω  gives the number of vehicles at that time, ( )ax ω . Figure 1 
illustrates the relationships among variables in (1)-(3). 
   

 
Figure 1 The Relationships among the Link Occupancy, Inflow Rate, Outflow Rate, 

Cumulative Inflow and Cumulative Outflow. 
 
By taking the derivative to both sides of (3), we have an alternative expression for the flow 
conservation condition: 

 ( ) ( ) ( )a
a a

x
u v

ω
ω ω

ω
∂

= −
∂

. (4) 

Equation (4) relates the number of vehicles on link a , ( )ax ω , to the inflow and outflow of 
link a  whereas (3) relates the number of vehicles on link a  to the cumulative inflow and 
outflow.  
 
2.2 First-In-First-Out (FIFO) 

Three FIFO properties are considered in the literature, namely link, route and OD. Link 
(Route) FIFO is satisfied if every user who enters the link (route) earlier will leave it sooner. 
Similarly, OD FIFO is satisfied if users on the same OD pair who depart the origin earlier will 
arrive the destination sooner. These three FIFO properties are defined through travel time and 
departure time, and play an important role in DTA problems, especially in describing 
aggregate flow propagation. Link FIFO can prevent unrealistic situation such as the fast 
traffic “jump over” the preceding slow traffic, and avoid the holding back problem (Carey and 
Subrahmanian, 2000). Although FIFO does not allow any realistic overtaking on a 
microscope level, in reality, road traffic tends to behave in a FIFO manner: Traffic which 
embarks on a road first will on average exit first (Carey, 1992).  In particular, on a single-lane 
road and in a queue, no overtaking can be occurred and capturing FIFO for this situation in 

 

Ua(ω) 
Va(ω) 

   ω O ω' 

Ua(ω) Va(ω)ua(ω')

va(ω')
 

xa(ω')
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modelling is a must. Moreover, OD FIFO appears as a reasonable reflection of our experience, 
subject to the condition of no substantial overtaking happening and travellers having nearly 
perfect information about the network condition. In this paper, FIFO usually refers to Link 
FIFO, unless we specify which types of FIFO. 
 
2.3 Time-flow Consistency, Inter-temporal Conservation or Flow Propagation 

With Link FIFO and flow conservation, if we know cumulative inflows and outflows, we can 
derive the travel time of each vehicle. By definition, ( )'aU ω  is the total inflow up to time 'ω . 

Let ( )"aV ω  gives the same number of vehicles for exiting that link. Since flow is conserved, 
the total number of vehicles entering a link must be equal to the total number exiting that link: 
 ( )'aU ω = ( )"aV ω . 
As no overtaking is allowed due to the FIFO condition, the vehicles leave as the same order as 
they enter, and the travel time of the last vehicle is equal to the exit time minus the 
corresponding entry time, i.e. " 'ω ω− .  The travel time of other vehicles can be derived based 
on the similar analysis, and we find that the travel time of each vehicle J entering at time 'ω  
is the horizontal distance between two cumulative curves for that vehicle. Mathematically, the 
travel time can be determined by: 
 ( ) ( )( )a a aU Vω ω τ ω= + , or  (5) 

 ( ) ( )1
a a aV Uτ ω ω ω−  = −  . (6) 

The first term on the right hand side in (6) is the exit time and the second term is the entry 
time. Figure 2 shows the relationship between cumulative curves and travel times under flow 
conservation and link FIFO.  
 
Taking the derivative of (5) and rearranging gives: 

 ( )( ) ( )
( )1

a
a a

a

u
v

d
d

ω
ω τ ω

τ ω
ω

+ =
+

. (7) 

Condition (7) (or (5)) depicts the one-to-one relationship among inflow rate, outflow rate and 
travel time, and is known as time-flow consistency as it can ensure the consistency between 
travel time and link flow. This condition makes the traffic flow model theoretical sound. The 
condition is also called intertemporal conservation, in contrast to contemporaneous 
conservation (3) or (4), because it considers flows in different time. Condition (7) can be used 
for propagating traffic flow, and therefore is sometimes referred to as flow propagation.  

 

Figure 2. The Relationship between Cumulative Curves and Travel Times 
 

 

Ua(ω) 
Va(ω) 

ω O 

Ua(ω) Va(ω)

ω′ ω′ + τa( ω′) 
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In the literature, time-flow consistency (7) is assumed to ensure FIFO. Actually, the time-flow 
consistency condition (7) is not equivalent to FIFO. They are equivalent only if we assume 
that  ( ) 0au ω ≥  and ( ) 0av ω ≥   for all ω . The following proposition and corollary emphasize 
this.  
 
Proposition 1. (Time-flow consistency and FIFO relationship): With the assumption of the 
inflow ( ) 0au ω ≥  and outflow ( ) 0av ω ≥  for all ω , condition (7) or (5) is necessary and 
sufficient to ensure FIFO.  
Proof: see propositions 3 and 4 in Carey (2004a). 
 
Corollary 1: The condition (7) or (5) on its own (without ensuring  ( ) 0au ω ≥  and ( ) 0av ω ≥   
for all ω ) is neither necessary nor sufficient for the travel time to satisfy FIFO. 
Proof: see corollaries 1 and 2 in Carey (2004a). 
 
2.4 Causality 

Causality (or strict causality) refers to the property that the link travel times for traffic 
entering at time ω  only depend on the traffic entering at time ω ω′ ≤ . This property means 
that the speed and travel time of a vehicle on a link is affected by the speed of vehicles ahead 
but not by vehicles behind. This property is consistent with vehicle following behaviour. We 
defined this property through travel time, not outflow. However,  when time-flow consistency 
is ensured, travel time has a one-to-one relationship with link flow and hence causality can 
also defined by outflow: the outflow rates at time ( )aω τ ω+  only depend on the traffic 

entering at time ω ω′ ≤ , where ( )aτ ω  is the travel time for vehicles entering at time ω . If the 
speed and travel time of a vehicle is affected by vehicles ahead and also by vehicles behind 
we refer this as to partial causality, which cannot be observed in traffic. In this paper, 
causality stands for strict causality. 
 
Partial and strict causality are not equivalent to (Link) FIFO. Moreover, causality is not the 
derived property from FIFO. The following proposition emphasizes their relationship. 
 
Proposition 2. (Causality and FIFO relationship): Neither partial causality nor strict 
causality is necessary and sufficient for the travel time to satisfy FIFO. 
Proof: See proposition 5 in Carey (2004a). 
 
2.5 Spillback and Junction Blockage 

Queue spillback refers to the end of queue spilling backwards in the network. When the queue 
spills backward passing the junction, the junction is blocked and this phenomenon is known 
as junction blockage. When the streets are short and the demand for them is high, queue 
spillback and junction blockage often occurs. This phenomenon must be captured in DTA 
modelling to get a realistic result.  
 
Although these five considerations are important to be captured in the traffic-flow component, 
only flow conservation (discussed in 2.1.1) is considered in every traffic flow model but the 
other considerations are not captured by every traffic flow models, as discussed later. 
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3. FORMULATION APPROACHES OF THE TRAFFIC-FLOW COMPONENT 

The formulation approaches can be classified based on the queue representation: point queue 
and physical queue, or whether it can capture queue spillback and junction blockage. The 
point-queue representation treats vehicles as points without physical lengths, whereas the 
physical-queue representation considers the vehicle lengths. Because of the fundamental 
difference in their assumption, only the physical-queue representation can capture junction 
blockage and queue spillback. In the following, we review the existing formulation 
approaches in each representation, which determine some DTA properties. Emphasis in this 
section will be on time-flow consistency and the key formulation difference between the two 
representations.  

3.1 Point-queue Representation   

In the point-queue representation, we have three existing approaches: the exit flow function 
approach (e.g., Carey and Srinivasan, 1993; Lam and Huang, 1995), the travel time function 
approach (e.g., Ran and Boyce, 1996; Yang and Meng, 1998; Huang and Lam, 2002), and the 
mixed approach (e.g., Yang and Huang, 1997). 

3.1.1 The Exit Flow Function Approach  

The exit flow function approach usually treats the outflow of a link (or a segment of link) as a 
non-decreasing function of the corresponding number of vehicles on the whole link (or the 
link segment) and/or as a function of inflow. Given the inflow rates and occupancies, the 
outflow rates can be determined by the flow conservation condition (4) and the predefined 
exit flow functions. The cumulative flows and hence travel times can then be obtained by (1), 
(2) and (6). This approach aims at finding a solution satisfying flow conservation (3) or (4), 
time-flow consistency (6) or (7), and the predefined exit flow functions.  

3.1.2 The Travel Time Function Approach 

The travel time function approach assumes that we have a (separable) travel time function on 
each link. The independent variables can include link inflow, outflow and occupancy. Given 
link inflows and link occupancies, we determine the travel times based on the travel time 
functions and flow conservation (4). We can then determine the outflows based on time-flow 
consistency (7). The key difference between the travel time function approach and the exit 
flow function approach is that the former starts with a travel time function and leaves the link 
outflows to be defined from the corresponding link inflows and travel times, while the latter 
starts with an exit flow function and leaves the link travel times to be defined later from the 
corresponding inflows and outflows. This implies that the former calculates link travel times 
before exit flows whereas the latter reverses the procedure and that the former employs 
predefined link travel time functions to calculate exit flows whereas the latter relies on 
predefined exit flow functions to determine exit flows. Alternatively, the travel time function 
approach can be viewed as finding a solution satisfying flow conservation (3) or (4), time-
flow consistency (6) or (7), and the predefined travel time functions. 
 
3.1.3 The Mixed Approach 

In this approach, we require both predefined travel time functions and exit flow functions. 
The outflows are determined based on the exit flow functions but the travel times are 
determined separately by the travel time functions not derived from the corresponding exit 
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flow functions or satisfied the time-flow consistency equation (7). Alternatively, the travel 
times are determined based on the travel time functions but the outflows are determined 
separately by the exit flow functions not derived from the corresponding travel time functions 
or satisfied time-flow consistency (7). In both cases, the exit flows and travel times calculated 
under this approach are not consistent, as opposed to the previous two approaches (Carey, 
2004b). This approach formulates the traffic-flow component using flow conservation (3) or 
(4), and the predefined exit flow and travel time functions not satisfying time-flow 
consistency (6) or (7). 

3.2 Physical-queue Representation 

There are two approaches in the physical-queue representation: the advanced exit flow 
function approach (e.g., Kuwahara and Akamatsu, 2001 and Szeto and Lo, 2004), and the 
combined approach (e.g., Adamo et al., 1999 and Rubio-Ardanaz et al., 2001). 

3.2.1 The Advanced Exit Flow Function Approach  

The advanced exit flow functions are derived from the Lighthill and Whitham (1955) and 
Richards (1956) (LWR) model, the hydrodynamic or kinematic wave model of traffic flow, 
using the non-smooth flow-density relationship. The main difference between this approach 
and the original exit flow function approach for the point-queue representation is that the 
advanced approach considers the storage capacity in the exit flow function to capture the 
effects of physical queues. Similar to the exit flow function approach, the travel times are 
determined after the exit flows are known. This approach determines a solution to satisfy flow 
conservation (3) or (4), time-flow consistency (6) or (7), and the advanced exit flow functions. 

3.2.2 The Combined Approach 

This approach divides a link into a running segment and a queuing segment. Traffic 
propagation on the running segment is based on the travel time function whereas that on the 
queuing segment is based on the simplified advanced exit flow function, which is the exit 
flow function that only considers the downstream storage capacity but does not consider 
shockwaves. Since this approach adopts the simplified advanced exit flow functions, the link 
and route travel times are deduced based on cumulative curves, which are obtained after exit 
flow determination. This approach determines a solution to fulfil flow conservation (3) or (4), 
time-flow consistency (6) or (7), the advanced exit flow functions, and the travel time 
functions. 

To sum up, the physical-queue representation explicitly models the storage capacity of each 
link whereas the point-queue one does not. In addition, the mixed approach under the point-
queue representation does not ensure time-flow consistency whereas the others do. This 
implies that the queuing representation indeed has no relationship with time-flow consistency. 
The travel time and exit flow function approaches under the point-queue representation can 
ensure time-flow consideration but the mixed approach cannot. To emphasize this, we have:  

Proposition 3: The queuing representation (whether queue spillback is captured) indeed has 
no relationship with time-flow consistency. 
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4. PROPERTIES OF POINT-QUEUE AND PHYSICAL-QUEUE DTA 

This section discusses the properties related to actual traffic behaviour (including FIFO and 
causality), those related to developing efficient algorithms (Differentiability and monotone 
properties of route cost) and those related to existence and uniqueness of solutions (continuity 
of route and OD cost, and monotonicity). These properties are summarized in Table 1. 

Table 1. A Comparison of the Properties between Point-queue and Physical-queue DTA  
 

a) Properties Related to Actual Traffic Behaviour 

 
b) Properties Related to Developing Efficient Algorithms, and Solution Existence and 

Uniqueness 
Route cost properties 
 

Point-queue problems Physical-queue problems 

Continuity w.r.t route 
flows 

Continuous under mild 
assumptions.  

Possibly discontinuous.  
 

Monotonicity w.r.t 
route flows 

Usually non-monotonic.  
 

Differentiability w.r.t 
route flows 

Differentiable under 
differentiable link travel time 
functions and  
non-differentiable under 
continuous exit flow functions.  

Possibly non-differentiable. 

Continuity of OD travel 
time w.r.t demands 

Continuous under mild 
assumptions. 

Possibly discontinuous. 
 

Existence  Must exist. May not exist. 
Uniqueness Non-unique in terms of route flows and link flows. 

 
4.1 Properties Related to Actual Traffic Behaviour: FIFO and Causality 

4.1.1 First-In-First-Out (FIFO) Properties 

As stated before, three FIFO properties are considered in the literature, namely link, route and 
OD. The three FIFO properties in DTA depend on the choices of the travel flow component as 
well as the travel choice principle, as discussed below: 

Solution properties 
 

Point-queue problems Physical-queue problems 

Causality May or may not satisfy 
causality, depending on the 
choice of travel time or exit 
flow functions.  

Obey causality.  

Link FIFO May or may not satisfy Link 
FIFO, depending on the choice 
of travel time or exit flow 
functions.  

May or may not satisfy Link 
FIFO, depending on 
whether addition variables 
are introduced to capture 
Link FIFO. 

Route FIFO  Satisfy Route FIFO if they satisfy Link FIFO.  
OD FIFO Satisfy this property under the DUO condition and certain 

assumptions, but not satisfy under the SDUO conditions.  
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Link FIFO 
a. Point-queue representation 
We consider three approaches in the point-queue representation: travel time function, exit 
flow function, and mixed approaches. Under the travel time function approach, whether Link 
FIFO is satisfied depends on the choice of link travel time functions ( ).ah . For differentiable 

travel time functions, they satisfy FIFO for all the entry time ω  if and only if ( ) 1aτ ω
ω

∂
> −

∂
 

holds for all the entry time (Carey, 2004a). Friesz et al. (1993) proved that the travel time 
function ( ) ( )1 2a ak k xτ ω ω= +  obeys Link FIFO, where ( )aτ ω  is the link travel time at time 

ω ; 1k  and 2k  are positive constants; ( )ax ω  is the link flow at time ω . For the nonlinear 

travel time function ( ) ( )( )a a ah xτ ω ω= , Xu et al. (1999) showed that the travel time function 
satisfies FIFO under the following sufficient condition:  the inflow rate is bounded above by 

aB  and the derivative of the travel time with respect to its link volume is bounded above by 
1

aB , where aB  is a constant for link a . The above functions can satisfy the property 

( ) 1aτ ω
ω

∂
> −

∂
 and hence link FIFO. For non-differentiable travel time functions, Huang and 

Lam (2002) proved that the non-differentiable travel time function in the deterministic 
queuing model satisfies Link FIFO. However, Daganzo (1995b) proved that the travel time 
functions depending on the inflow ( )au ω  violate FIFO. 

Under the exit flow function approach, whether solutions follow Link FIFO is determined by 
the choice of exit flow functions. For single traffic type, FIFO is ensured through the time-
flow consistency condition and non-negative inflow and outflow assumption. Nevertheless, 
nearly all exit flow functions cannot capture Link FIFO when we consider multi-class traffic 
type, since in most cases, each traffic type has its own time-flow consistency condition. Under 
the non-negative inflow and outflow assumption, each vehicle satisfies FIFO with respect to 
its own traffic type but not the other traffic types, as there is no coordination among the travel 
time of each traffic type - The two traffic types enter the same link at the same time can leave 
in different time. There are two exceptions. One is the Simplified Cell Transmission Model 
proposed by Szeto (2003), which is obtained by dropping the storage capacity term in the 
Daganzo’s (1994, 1995a) cell transmission model. Another was proposed by Smith (1993). 
Comparing with other exit flow functions, these two models/functions contain one more 
variable to store the information of the waiting time of each traffic packet. Leaving priority is 
given to those packets which have higher waiting time. Higher waiting time implies entering 
earlier. This means that both models allow the packets with higher waiting time to leave 
earlier, implying that Link FIFO is satisfied.  

For the mixed approach, Link FIFO is not guaranteed. If the travel time functions, defined 
independently (e.g., Friesz linear travel time model) or defined by the exit flow function not 

using the time-flow consistency condition (e.g., ( )( ) ( )
( )( )

a
a a

a a

x
x

g x
ω

τ ω
ω

= ), satisfies the 

sufficient condition in Xu et al. (1999), then FIFO is guaranteed.   Note that FIFO is not 
equivalent to time-flow consistency (see proposition 1). This means that a model can satisfy 

FIFO but not time-flow consistency. For instance, ( )( ) ( )
( )( )

a
a a

a a

x
x

g x
ω

τ ω
ω

=  satisfies FIFO but 
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not time flow consistency (Carey 2004b).  

b. Physical-queue representation 
Under the physical-queue representation, the choice of physical-queue traffic flow models 
controls whether Link FIFO is obeyed in the resultant DTA problems. For example, under the 
advanced exit flow function approach, the cell transmission model (Daganzo, 1994, 1995a) 
employs additional variables to ensure the traffic flow obeying FIFO.  

In the combined approach, a careful selection of the travel time function and advanced exit 
flow function is required in order to capture Link FIFO. For example, in Adamo et al.’s model 
(1999), FIFO is ensured in the queuing segment and there is no restriction on the choice of 
travel time function on the running segment. If we use Friesz et al.’s. (1993) linear travel time 
function or a nonlinear travel time function under the sufficient condition in Xu et al. (1998), 
then FIFO is ensured. 

Route FIFO 
Like Link FIFO, whether route FIFO is ensured depends on the choice of the traffic-flow 
component, as Link FIFO implies Route FIFO (Wu et al., 1998). 

OD FIFO 
Unlike Link FIFO and Route FIFO, OD FIFO depends not only on the traffic-flow component 
but also the travel choice component. In the following, we discuss OD FIFO based on two 
common travel choice principles discussed in Ran and Boyce (1996): (i) Dynamic user 
optimal (DUO) and (ii) Stochastic dynamic user optimal (SDUO) 

(i) DUO  
We focus on two particular classes of DTA problems: route choice and simultaneously route 
and departure time choice. For the route choice DUO problems, Wu et al. (1998) proved that 
Route FIFO together with the DUO route choice conditions implies the OD FIFO condition. 
This also implies that whether OD FIFO is ensured or not depends on whether Route FIFO is 
ensured, which in turns depends on the choice of the traffic-flow component. In the DUO 
simultaneous route and departure time choice problems, travellers optimize for their total 
generalized costs, which compromise both the schedule delay cost as well as the travel time 
cost.  Hence, the user-optimal simultaneous route and departure time choice may or may not 
constitute the shortest travel time route like the DUO route choice problems, since the early or 
late arrival penalties are part of the consideration. The question is whether the DUO 
simultaneous route and departure time choice problems would reproduce OD FIFO. Szeto and 
Lo (2004) gave an answer to the question and showed that OD FIFO is only maintained under 
link FIFO, and DUO and the following conditions on the costs: 

1. The travel cost is the sum of the travel time and schedule delay costs; 
2. The schedule delay cost is piecewise linear, and; 
3. The unit travel time cost is higher than that of early arrival.   

Note that the last condition is consistent with the empirical condition found by Small (1982). 
This means that the theoretical analysis together with the empirical results indicates that OD 
FIFO should uphold in reality. This finding is consistent with our experience, which reflects 
that OD FIFO generally holds in reality subject to overtaking not occurring frequently and all 
travellers having perfect information about the network status. 

(ii) SDUO  
Under the SDUO conditions, OD FIFO cannot be satisfied. In SDUO route choice problems 
and SDUO simultaneous route and departure time choice problems, travellers are assumed to 
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have imperfect information about the network condition. As a result, travellers departing at 
the same time at the same origin can select routes with different travel times and hence reach 
their common destination at different times. 
 
4.1.2 Causality 

a. Point-queue representation 
Again, we consider three approaches under the point-queue representation. Under the travel 
time function approach, whether causality is satisfied depends on the choice of link travel 
time functions ( ).ah . Researchers proposed many travel time functions. MOST of them 
ensure causality. For example, Friesz et al. (1993) employed the travel time function which 
depends on the link occupancy; Travel time to be a function of its link inflow, occupancy, and 
outflow was proposed by Ran and Boyce (1996). None of the independent variables in these 
functions depend on the flows after the entry time. However, Carey (2004a) pointed out that 
the travel time function ( ) ( )( )a a ah x wτ ω ω= +  violates causality, where ( ).ah  is the travel 
time function, and w  is a positive number, because the independent variable is a function of 
the link occupancy after the entry time. 

For the exit function approach, the choice of exit flow functions determines whether the 
approach maintains causality. The exit flow function ( ) ( )( )a a av g xω ω=  violates causality 
(Heydecker and Addison, 1998), or its derived travel time from time-flow consistency (5) 
violates causality. From flow conservation (3) , we have ( ) ( ) ( )a a ax U Vω ω ω= − , where 

( )aU ω  and ( )aV ω  are cumulative inflow and outflow at time ω . Because of the time-flow 

consistency condition  (5) (or ( )( ) ( )a a aV Uω τ ω ω+ = ), we have 

 ( )( ) ( )( ) ( )a a a a ax U Uω τ ω ω τ ω ω+ = + − .  (8) 
Hence, we have  
 ( )( )( )a a ag x ω τ ω+ = ( )( ) ( )( )a a a ag U Uω τ ω ω+ − ,   (9) 

meaning that the outflow ( )( )( )a a ag x ω τ ω+  at time ( )aω τ ω+  depends on how much traffic 

has entered the time interval ( )( , aω ω τ ω+  , and hence the derived travel time based on (5) 
or (7) violates causality. An exception of the exit flow function is  
 ( )( )( ) ( ) ( )( ),a a a a a av x g u xω τ ω ω ω+ = , (10)   

where the outflow (10) follows the time-flow consistency condition (7), and ( )( )a axτ ω  in (7) 
is any existing travel time function that satisfies causality. Since the exit flow function (10) is 
derived from the travel time function satisfying causality using the one-to-one relationship, 
the exit flow function (10) can thus satisfy causality. An example of exit flow function 

satisfying causality is ( )( ) ( )
( ) ( )1

1

a
a a

a a

a

u
v

x x
s

ω
ω τ ω

ω ω
δ

+ =
− −

+
, where as  and δ  are the 

maximum exit rate and the discrete time interval. The corresponding travel time function has 

a form of ( ) ( )0 a
a a

a

x
s
ω

τ ω τ
δ

= +  ensuring causality, where 0
aτ  is the free flow travel time. From 

the above discussion, we know that: 
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Proposition 4: Ensuring time-flow consistency is not sufficient to ensure causality.  
 
For the mixed approach, the selection of predefined travel time functions determines whether 
the approach maintains causality. For example, Fernandez and de Cea (1994) employed a 
BPR type travel time function for time ω  with the independent variable to be the link 
occupancy at that time. Thus, causality is ensured. Yang and Huang (1997) adopted the travel 

time function ( )( ) ( )
( )( )

a
a a

a a

x
x

g x
ω

τ ω
ω

=  , where ( )( )a ag x ω  is an exit flow function. This 

travel time function satisfies causality but does not satisfy time-flow consistency in general 
(Carey 2004b). Thus we have: 
 
Proposition 5: Ensuring time-flow consistency is not necessary to ensure causality. 
 
Proposition 6. (Causality and time-flow consistency relationship): Ensuring time-flow 
consistency is neither necessary nor sufficient to ensure causality.  
Proof: The result follows directly from propositions 5 and 6.  
 
b. Physical-queue representation 
As mentioned before, advanced exit flow functions are derived from the hydrodynamic theory. 
One fundamental property of this theory is that the wave speed is less than the vehicle speed. 
As a result, the trajectory of a vehicle can only be affected by conditions downstream of it 
(Heydecker and Addison, 1998) and hence advanced exit flow functions, including Cell 
transmission model (Daganzo 1994, 1995a), guarantee causality.  
 
Whether the combined approach ensures causality relies on both travel time functions and 
advanced exit flow functions. The combined approach guarantees causality only if both travel 
time functions and advanced exit flow functions guarantee causality. In Adamo’s model, 
causality is guaranteed, as the travel time function and the advanced flow function can ensure 
causality. 
 
4.1.3 Implications from FIFO and Causality 

Violations of Link FIFO and causality imply poor reflection of reality because traffic tends to 
behave in a FIFO manner (Carey, 1992) and that vehicle following is consistent with causality 
(Heydecker and Addision, 1998). Models that exhibit these violations are unreliable.   

As shown in Table 1a, we observe that causality and FIFO have no relationship to spillback 
consideration. Causality and/or FIFO may or may not be ensured in both queue 
representations. More formally, we have: 

Proposition 7. (Causality, FIFO and queue representation relationship): Causality and FIFO 
have no relationship to queue representation. 

4.2 Properties Related to Solution Existence and Uniqueness and Development of 
Efficient Algorithms 

The properties of the route cost mapping have implications not only on the development of 
efficient algorithms but also on solution existence and uniqueness. Some efficient algorithms 
rely on monotone, and differentiability properties of route travel costs. The continuity (strict 
monotonicity) of route or link cost is a pre-requisite for the existence (uniqueness) of 
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solutions (Nagurney, 1993). These properties depend on the traffic-flow modelling 
assumption - whether queue spillback is considered - and the form of travel time or exit flow 
functions adopted.  A detailed discussion on these topics can be found in Szeto (2003) and 
Szeto and Lo (2005). In the following, we highlight the similarities and differences of 
properties under the two queuing representations, and discuss their implications.  

4.2.1 Similarities and Differences of Properties under the Two Queuing Representations 

As seen in Table 1b, under both queuing representations, we observe that  
(i) The route cost is non-monotonic with respect to route flows; 
(ii) The route cost is non-differentiable with respect to route flows if certain traffic flow 

models are adopted, and; 
(iii) Solutions may not be unique if they exist. 
However, under the physical-queue representation, we find that 
(i) Route costs may not be continuous with respect to route flows;  
(ii) OD travel costs may not be continuous with respect to demands, and; 
(iii) A Wardropian solution may not exist. 
 
4.2.2 Implications 

The non-monotone and non-differentiability properties in physical-queue DTA lead to 
difficulties in finding solutions if one exists at all, because the convergence of existing 
algorithms rely on either monotonicity or differentiability. One may rely on less restrictive 
algorithms such as genetic algorithm (e.g., Lo and Szeto, 2002) or simulated annealing (e.g., 
Friesz et al., 1992) for solutions.  

The non-uniqueness of link flows implies that traffic can be predicted differently in various 
solutions. This raises the question of accuracy of the DTA models for various applications.  
Other than this, in actual applications, one must consider all possible solutions to cater for the 
worse-case scenarios in the planning and design.  

All the unique properties are related to the existence of solutions to DTA problems. The 
implication of the discontinuity property of the supply function is that solutions may not exist 
for DUO problems with elastic demands. For any OD pair at any departure time, one can 
imagine that three situations can happen as shown in  Figure 3. For cases (i) and (iii), a 
solution exists to the problem but for case (ii), no solution exists! For the fixed demand case,  
we clearly observe the trade-off between the existence of solutions and the levels of traffic 
dynamics captured; point-queue DTA solutions always exist whereas those for physical-queue 
problems may not.   

 Figure 3. Three Possible Scenarios for the DUO Problem with Elastic Demands 

Case (i)

Case (ii) 

Case (iii)

OD demand 

OD travel time

Demand function
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5. CONCLUSIONS  

This paper describes five important considerations in the traffic-flow component, namely flow 
conservation, FIFO, causality, time-flow consistency, and queue spillback, and summarizes 
the properties of DTA under both the point-queue and physical-queue representations, as 
shown in Table 1. The implications of properties to offline transport planning and online 
traffic control are discussed. Causality and FIFO are investigated in details, and their 
relationship with time-flow consistency, queue representation is addressed. The main findings 
are that causality is not a derived property from FIFO; Causality is not equivalent to FIFO; 
The time-flow consistency condition is not equivalent to FIFO; Time-flow consistency cannot 
ensure causality; Queue representation has no relationship with time-flow consistency nor 
FIFO and causality; the key difference between the point-queue and physical-queue 
representations is that the latter includes storage capacity in the resultant formulation to 
capture the effect of queue spillback. 

The future research directions can be broadly classified by theoretical and computational 
issues. As mentioned before, a Wardropian solution may not exist in physical-queue DTA. To 
cope with this, in the future, one can relax the exactly equal travel time/cost assumption in 
DUO for developing new travel choice principles. One possible approach is to allow the travel 
times of all used routes to be unequal but their maximum difference must not exceed a 
tolerance or an aspiration level. That is, we develop a travel choice component based on the 
bounded-rationality behavioural notion. One can also develop other travel choice component 
that is behaviourally sound and consistent with actual traffic behaviour. Improving the traffic-
flow component is another. One can also develop advanced traffic flow models based on the 
existing traffic flow models to capture realistic traffic behaviours such as shockwaves, queue 
formulation and dissipation, and queue spillback, lane changing behaviour, hysteresis 
phenomenon, etc., and use the unique mapping developed by Lo and Szeto (2002) to 
encapsulate the advanced traffic flow models in a DTA framework.   

For the computational issue, developing efficient and/or convergent algorithms for DTA 
models and the bi-level models with DTA models as a lower level model is one. A possible 
approach for this is implementing parallelized genetic algorithm (e.g., Wong et al., 2001) for 
solving these models to increase the computation efficiency. Developing methods, such as 
using link performance functions at some stages of computation, to approximate the unique 
mapping of the traffic-flow component and to speed up the computation is another. Moreover, 
a large network involves many paths, even though most would not be used. A large path set 
makes path enumeration impossible. However, to deal with queue spillback properly, we must 
use path based DTA models.  Research can be done on the path set generation in DTA models. 

ACKNOWLEDGEMENTS 
 
This research is sponsored by the Competitive Earmarked Research Grant HKUST6283/04E 
from the Hong Kong Research Grant Council. We thanks for the useful and constructive 
comments from the three referees. 

REFERENCES 
 
Adamo, V., Astarita, V., Florian, M., Mahut, M. and Wu, J.H. (1999) Modeling the Spillback 
of Congestion in Link Based Dynamic Network Loading Models: A Simulation Model with 
Application. In A. Ceder (Ed.), Transportation and Traffic Theory, Pergamon-Elservier, 
New York, 555-573. 

Journal of the Eastern Asia Society for Transportation Studies, Vol. 6, pp. 2108 - 2123, 2005

2121



Carey M. (1992) Nonconvexity of the Dynamic Traffic Assignment Problem. 
Transportation Research 26B, 127-133.  

Carey, M. (2004a) Link Travel Times I: Desirable Properties Networks and Spatial 
Economics. 4, 257-268. 

Carey, M. (2004b) Link Travel Times II: Properties Derived from Traffic-flow Models. 
Networks and Spatial Economics. 4, 379-402. 

Carey M. and Srinivasan, A. (1993) Externalities, Average and Marginal Costs, and Tolls on 
Congested Networks with Time-Varying Flows. Operations Research 41, 217-231.  

Carey, M. and Subrahmanian, E. (2000) An Approach to Modeling Time-Varying Flows on 
Congested Networks. Transportation Research 34B, 157-183. 

Daganzo, C.F. (1994). The Cell Transmission Model: A Simple Dynamic Representation of 
Highway Traffic. Transportation Research 28B, 269-287. 

Daganzo, C.F. (1995a) The Cell Transmission Model, Part II: Network Traffic. 
Transportation Research 29B, 79-93. 

Daganzo, C.F. (1995b) Properties of Link Travel Time Functions under Dynamic Loads. 
Transportation Research 29B, 93-98. 

Fernandez, J.E. and De Cea, J. (1994) Flow Propagation Description in Dynamic Network 
Assignment Models. TRISTAN II, Capri June 1994. 

Friesz, T.L., Bernstein, D.H., Smith, T.E., Tobin, R.L., and Wie, B.W. (1993) A Variational 
Inequality Formulation of the Dynamic Network User Equilibrium Problem. Operations 
Research 41, 179-191. 

Friesz, T.L., Cho, H.J., Mehta, N.J., Tobin, R.L., and Anandalingam, G. (1992) A Simulated 
Annealing Approach to the Network Design Problem with Variational Inequality Constraints. 
Transportation Science 26, 18-26.  

Heydecker, B.G. and Addison, J.D.  (1998) Traffic Models for Dynamic Traffic Assignment. 
Transport Networks: Recent Methodological Advances, 35-49. 

Huang, H.J. and Lam, W.H.K. (2002) Modeling and Solving Dynamic User Equilibrium 
Route and Departure Time Choice Problem in Network with Queues. Transportation 
Research 36B, 253-273. 

Kuwahara, M. and Akamatsu, T. (2001) Dynamic User Optimal Assignment with Physical 
queues for a Many-To-Many OD Pattern. Transportation Research 35B, 461-479. 

Lam, W.H.K., and Huang, H.J. (1995) Dynamic User Optimal Traffic Assignment Model for 
Many to One Travel Demand. Transportation Research 29B, 243-259.  

Lighthill, M.J. and Whitham, J.B. (1955) On Kinematic Waves. I. Flow Movement in Long 
Rivers. II. A Theory of Traffic Flow on Long Crowded Road. Proceedings of Royal Society 
A229, 281-345. 

Journal of the Eastern Asia Society for Transportation Studies, Vol. 6, pp. 2108 - 2123, 2005

2122



Lo, H.K. and Szeto, W.Y. (2002) A Cell-Based Dynamic Traffic Assignment Model: 
Formulation and Properties. Mathematical and Computer Modeling 35, 849-865. 

Nagurney, A. (1993) Network Economics: A Variational Inequality Approach. Kluwer 
Academic Publishers. Norwell, Massachusetts, USA.   

Ran, B. and Boyce, D. (1996) Modeling Dynamic Transportation Networks. An Intelligent 
Transportation System Oriented Approach. Second Revised Edition. Springer-Verlag, 
Heidelberg. 

Richards, P.I. (1956) Shockwaves on the Highway. Operations Research 4, 42-51. 

Rubio-Ardanaz, J.M., Wu, J.H., and Florian, M. (2001) A Numerical Analytical Model for the 
Continuous Dynamic Network Equilibrium Problem with Limited Capacity and Spill Back. 
2001 IEEE Intelligent Transportation Systems Conference Proceedings, 263-267.  

Small, K.A. (1982) The Scheduling of Consumer Activities: Work Trips. American 
Economic Review 72, 467-479. 

Smith, M.J. (1993) A New Dynamic Traffic Model and the Existence and Calculation of 
Dynamic User Equilibria on Congested Capacity-Constrained Road Networks. 
Transportation Research 27B, 49-63. 

Szeto, W.Y. (2003) Dynamic Traffic Assignment: Formulations, Properties, and 
Extensions. PhD Thesis, The Hong Kong University of Science and Technology, H.K. 

Szeto, W.Y. and Lo, H.K. (2004) A Cell-Based Simultaneous Route and Departure Time 
Choice Model with Elastic Demand. Transportation Research 38B, 593-612. 

Szeto W.Y. and Lo, H.K. (2005) Dynamic Traffic Assignment: Review and Future Research 
Directions. Journal of Transportation Systems Engineering and Information Technology. 
In press. 

Tong, C.O. and Wong, S.C. (2000) A Predictive Dynamic Traffic Assignment Model in 
Congested Capacity-Constrained Road Networks. Transportation Research 34B, 625-644.  

Wong, S.C., Wong, C.K., and Tong, C.O. (2001) A Parallelized Genetic Algorithm for 
Calibration of Lowry Model. Parallel Computing 27, 1523-1536. 

Wu, J.H., Chen, Y., and Florian, M. (1998) The Continuous Dynamic Network Loading 
Problem: A Mathematical Formulation and Solution Method. Transportation Research 32B, 
173-187. 

Xu, Y.W., Wu, J.H., Florian, M., Marcotte, P., and Zhu, D.L. (1999) Advances in the 
Continuous Dynamic Network Loading Problem. Transportation Science 33, 341-353. 

Yang, H. and Huang, H.J. (1997) Analysis of the Time-varying Pricing of a Bottleneck with 
Elastic Demand using Optimal Control Theory. Transportation Research 31B, 425-440. 

Yang, H. and Meng, Q. (1998) Departure Time, Route Choice and Congestion Toll in a 
Queuing Network with Elastic Demand. Transportation Research 32B, 247-260.  

Journal of the Eastern Asia Society for Transportation Studies, Vol. 6, pp. 2108 - 2123, 2005

2123


