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Abstract: Many problems in transportation require an Origin-Destination (O-D) matrix which 
is usually obtained from a large survey. This survey tends to be costly, labour intensive, and 
time disruptive. Therefore, more use should be made of low-cost traffic data. One possible 
way is by applying transport demand models, described as a function of one or more 
parameters that estimate the number of trips made during a period of time. Two estimation 
methods have been developed, namely: Non-Linear-Least-Squares (NLLS) and Maximum-
Likelihood (ML). The objective is to develop two estimation methods based on Maximum-
Entropy (ME) and Bayesian-Inference (BI) approaches. These four estimation methods will 
be used as methods to estimate the parameters of transport demand models. The work 
concentrated on the estimation of two types of models, namely: Gravity (GR) and Gravity-
Opportunity (GO). 
 
The 1999 Bandung's Urban Traffic Movement Survey (urbanised vehicle movement) has 
been used to test the developed method. Based on several statistical tests, the estimation 
methods are found to perform satisfactorily since each calibrated model reproduced the 
observed matrix fairly closely.  
 
Keywords: O-D matrix, traffic counts, Maximum Entropy, Bayesian Inference, estimation 
methods  
 
 
1. INTRODUCTION 
 
Travel is an activity that has become part of our daily life and the demand for it always present 
problem especially in urban areas such as congestion, delay, air pollution, noise and 
environment. In order to alleviate these problems, it is necessary to understand the underlying 
travel pattern. The notion of Origin-Destination (O-D) Matrix has been widely used and 
accepted by transport planners as an important tool to represent the travel pattern. An O-D 
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matrix gives a very good indication of travel demand, and therefore, it plays a very important 
role in various types of transport studies, transport planning and management tasks.  
 
Most techniques and methods for solving transportation problems (urban and regional) 
require O-D matrix information as a fundamental information to represent the transport 
demand. The conventional method to estimate O-D matrices requires very large surveys such 
as: home and roadside interviews; which are very expensive, lengthy, labor intensive, subject 
to large errors, and moreover, time disruptive to trip makers. All of these require an answer. 
Therefore, the new approach to tackle all of these problems is urgently required.    
 
The need for inexpensive methods, which require low-cost data, less time and less manpower 
generally called as ‘unconventional method’ is therefore obvious due to time and money 
constraint. Traffic counts, the embodiment and the reflection of the O-D matrix; provide direct 
information about the sum of all O-D pairs which use those links. Some reasons why traffic 
counts are so attractive as a data base are: firstly, they are routinely collected by many authorities 
due to their multiple uses in many transport planning tasks. All of these make them easily 
available. Secondly, they can be obtained relatively inexpensive in terms of time and manpower, 
easier in terms of organization and management and also without disrupting the trip makers.  
 
 
2. METHODS FOR ESTIMATING AN O−D MATRIX 
 
Methods for estimating an O-D matrix can be classified into 2 main groups as shown in 
figure 1. They are as follows: conventional and unconventional methods (Tamin, 1988). 

Figure 1. Methods for estimating an O-D matrix (Tamin, 1988) 
 
Conventional methods rely heavily on extensive surveys, making them very expensive in 
terms of manpower and time, disruption to trip makers and most importantly the end products 
are sometimes short-lived and unreliable. Another important factor is the complications that 
arise when following each stage of the modelling process. Furthermore, in many cases 
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particularly in small towns and developing countries, planners are confronted with the task of 
undertaking studies under conditions of time and money constraints, which make the 
application of the conventional methods almost impossible. The introduction of inexpensive 
techniques for the estimation of O-D matrices will overcome the problem. 
 
As a result of dissatisfaction expressed by transport planners with conventional methods, 
other techniques for estimating O-D matrices which based on traffic counts have evolved over 
the years; these are generally called ‘unconventional methods’. The aim of unconventional 
methods is to provide a simpler approach to solve the same problem and at a lower cost. 
Ideally, this simpler approach would treat the four-stage sequential model as a single process. 
To achieve this economic goal, the data requirements for this new approach should be limited 
to simple zonal planning data and traffic counts on some links or other low-cost data.  
 
 
3. TRANSPORT DEMAND MODEL ESTIMATION FROM TRAFFIC COUNTS 
 
The transport demand model estimation approach assumes that the travel pattern behaviour is 
well represented by a certain transport model, e.g. a gravity model. The main idea is to apply 
a transport model to represent the travel pattern. It should be noted here that the transport 
demand models are described as functions of some planning variables like population or 
employment and some parameters. Whatever the specification and the hypotheses underlying 
the models, the main task is to estimate their parameters on the basis of traffic counts. Once, 
the parameters of the postulated transport demand models have been calibrated, they may be 
used not only for the estimation of the current O-D matrix, but also for predictive purposes. 
The latter requires the use of future values for the planning variables. 
 
Consider a study area which is divided into N zones, each of which is represented by a 
centroid. All of these zones are inter-connected by a road network which consists of series of 
links and nodes. Furthermore, the O-D matrix for this study area consists of N2 trip cells. 
(N2−N) trip cells if intrazonal trips can be disregarded. The most important stage is to identify 
the paths followed by the trips from each origin to each destination. The variable lk

idp  is used 
to define the proportion of trips by mode k travelling from zone i to zone d through link l. 
Thus, the flow on each link is a result of: 
 
 trip interchanges from zone i to zone d or combination of several types of movement 

travelling between zones within a study area (=Tid); and 
 
 the proportion of trips by mode k travelling from zone i to zone d whose trips use link l, 

which is defined by lk
idp  (0 ≤ lk

idp ≤ 1). 
 
The total volume of flow ( k

lV̂ ) in a particular link l is the summation of the contributions of 
all trips interchanges by mode k between zones within the study area to that link. 
Mathematically, it can be expressed as follows: 

 
∑∑=

i d

lk
id

k
id

k
l p.TV                                                        (1) 

 
Given all the lk

idp  and all the observed traffic counts ( k
lV̂ ), then there will be N² unknown k

idT ’s 
to be estimated from a set of L simultaneous linear equations (1) where L is the total number of 
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traffic (passenger) counts. In principle, N² independent and consistent traffic counts are required 
in order to determine uniquely the O-D matrix [ k

idT ]. In practice, the number of observed traffic 
counts is much less than the number of unknowns k

idT 's. 
 
3.1 Fundamental Basis 
 
3.1.1 Gravity model (GR) 
 
Assume that the interzonal movement within the study area can be represented by a certain 
transport demand model such as gravity (GR) model. Hence, the total number of trips Tid with 
origin in i and destination d for all trip purposes or commodities can be expressed as: 

 
∑=

k

k
idid TT                                                               (2) 

k
idT  is the number of trips for each trip purpose or commodity k travelling from zone i to zone 

d as expressed by equation (3) generally known as a doubly-constrained gravity model 
(DCGR). 

           k
id

k
d

k
i

k
d

k
i

k
id f.B.A.D.OT =                                                    (3) 

where: 
 

k
iA and k

dB  = balancing factors expressed as: 
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k
id

k
i

k
i f.O.A

−





 ∑                                                     (4) 

 
k

idf = the deterrence function = ( )k
idC.exp β−                                                                            (5) 

 
The equations for Ai and Bd are solved iteratively, and it can be easily checked that they 
ensure that Tid given in equation (3) satisfies the constraint equation (2). This process is 
repeated until the values of Ai and Bd converge to certain unique values. 
 
3.1.2 Gravity-Opportunity model (GO) 
 
Wills (1978,1986) developed a flexible gravity-opportunity (GO) model for trip distribution 
in which standard forms of the gravity and intervening-opportunity model are obtained as 
special cases. Hence the question of choice between gravity or intervening-opportunity 
approaches is decided empirically and statistically by restrictions on parameters which control 
the global functional form of the trip distribution mechanism. 
 
a. An ordered O-D matrix. Let origins and destinations be numbered consecutively in the usual 
way, such that i=1,2,..,I are origins and d=1,2,..,J are destinations, and let Tid be the observed 
trips from origin i to destination d. Define now a transformation (i)

jd for each origin i such that: 
 
                1  if destination d is the jth position in ascending order of distance away from i 

i  
jd δ =                                                                         (6) 

        0  otherwise  
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and then the ordered O-D matrix can be obtained by the following transformation as: 
 

 ijZ  = [ ]∑ δ
d

id
i
jd T.                                                      (7) 

 

Thus, Zij represents the trips from origin i to the jth destination ranked by distance away from i. 
Note that j is always defined as a function of i, so it is perhaps more correctly designated as j(i) 
but for notational simplicity we omit the i as being understood. While the ordering 
transformation i  

jd δ produces an ordered O-D matrix, its inverse δ 1i
jd
− allows the observed O-D 

matrix to be recovered by:  

 idT  = [ ]∑ −δ
d

id
1i

jd Z.                                                           (8) 

 
It should be noted that this part of transformations is applicable to any variable based on the 
O-D matrix, notably the trip cost matrix, the proportionality factor and the destination 
balancing factor, in addition to the O-D matrix. 
 
b. Normalization. To achieve the logical consistency such that the sum (over destinations) of 
the estimated trips for each origin i is equal to the observed trips generated at i and similarly, 
for the sum (over origins) of the estimated trips for each destination j is equal to the observed 
trips generated at j, then the two following constraints are required. 

 
Oi  = ∑

j
ijZ                                                      (9a) 

 [ ]∑ δ=
d

d
i
jd

i
j D.D     and    ( )∑ ∑ 








δ= −

i j
ij

1i
jdd Z.D                            (9b) 

 
c. Transformations. In order to provide a monotonic scaling of variables in such a manner as to 
generate families of specific functional forms, the Box-Cox transformations is used. The direct 
Box-Cox transformation of a variable y can be defined as: 
 

    
ε
−ε )1y(  ε ≠ 0                                                      

=ε)(y                                                                       (10) 
 logey  ε = 0                                               

 
and the inverse Box-Cox transformation as: 

ε+ε /1)1y(  ε ≠ 0                              
   =ε/1y                                                                           (11) 

exp y  ε = 0                             

These transformations may be combined into a new function which we introduce as a convex 
combination in µ. 

)/1()(),( y. )1(y. y εεµε µ−+µ=            with 10 ≤µ≤              (12) 
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d. Specification of the Opportunity Function 
 
A key step in the integration of both models is the specification of an opportunity function 
which has as arguments destination-attribute variables such as population, income or some 
other measures of opportunities and generalized cost or trip impedance variables relating 
origin and destination. The opportunity function Uip relates i and the pth destination away 
from i and is defined generally as: 

 
   )(

ip
)(i

pip C..D..)1[(expU ΦΩ β−αε−=                                         (13) 
 

Uip is defined here as a combined vector of intervening-opportunity factors and impedances. 
The term (1-ε) ensures that, when ε=1 then the gravity model is obtained and the destination 
intervening-opportunity effect is removed. These impedances weight the intervening-
opportunity by their location to origin and destination, generally the closer the intervening-
opportunity to an origin the greater the impact on travel between i and j. Table 1 shows the 
specification of the opportunity function depending on the value of parameters Ω and Φ. 

 
Table 1. Specification of the Opportunity Function 

Ω Φ Intervening-Opportunity Impedance Uip 

Ω Φ ].D  . )1( [exp )(i
p

Ωαε−  ]C. [exp )(
ip
Φβ−  ]C. .D  . )1( [exp )(

ip
)(i

p
ΦΩ β−αε−  

1 1 ].D  . )1( [exp i
pαε−  ]C. [exp ipβ−  ]C. D. . )-1( [exp ip

i
p β−αε  

0 0 )1(  
piD ε−α  β−

ipC  βε−α -
ip

)1(
pi C .D  

1 0 ].D  . )1( [exp i
pαε−  β−

ipC  ]Clog . .D  . )-1( [exp ipe
i
p β−αε  

0 1 )1(  
piD ε−α  ]C. [exp ipβ−  ]C. Dlog . . )-1( [exp ip

i
pe β−αε  

Source: Wills (1986) 
 
e. Structure of the Proportionality Factor 
 
The opportunity function is incorporated into a general proportionality factor Fij which is defined 
by the difference in functions of the cumulative opportunities from i to the jth destination away 
from i, and from i to the (j-1)th destination away from i, and can be defined as: 

 

1ijijij XXF −−=                                                         (14) 

The most general form of the cumulative opportunities to be considered here defines Xij and Xij-1 
as: 

 ∑ µε=
j

p

),(
ipij )U(X     and   ∑

−
µε

− =
1j

p

),(
ip1ij )U(X                                (15) 

where (ε,µ) transformation is defined by equations (10)-(12). Subsitution of equation (15) into 
equation (12) leads to the general proportionality factor form as: 
 

∑∑
−

µεµε −=
1j

p

),(
ip

j

p

),(
ipij )U()U(F                                             (16) 
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The general proportionality factor is subjected to a convex combination of direct and inverse 
Box-Cox transformations. The form given by equation (18) generates two branches of special 
cases: the direct-opportunity (DO) model, with µ=1, and the inverse-opportunity (IO) 
model, with µ=0. The DO model is significant because it contains the important special case 
of the logarithmic-opportunity (LO) model, with ε=0. That is: 
 

 )U(log)U(logF
1j

p
ipe

j

p
ipeij ∑∑

−

−=                                         (17) 

The IO model is particularly important becasue it contains the exponential-opportunity 
(EO) model, again with ε=0. That is: 

  )U(exp)U(expF
1j

p
ip

j

p
ipij ∑∑

−

−=                                           (18) 

We can also consider blends of the LO and EO models, without going to the full GO model, 
by taking a convex combination of equations (19) and (20) with the mixture depending on 
values of µ. This blended form, the blended-opportunity (BO) model, is given in equation 
(19) as: 

∑ ∑∑∑
−−

−µ−+−µ=
j

p

1j

p
ip

j

p
ip

1j

p
ipeipeij )]U(exp)U(exp)[1(])U(log)U(log[F              (19) 

Finally, we observe that if ε=1, for 10 ≤µ≤ , the gravity (GR) model is revealed as: 

ij

1j

p
ip

j

p
ipij U)U()U(F =−= ∑∑

−

                                             (20) 

showing that the standard GR model can be obtained as a special case of the GO model. As 
mentioned, different values of the parameters controlling these transformations generate 
contrasting families of models, notably the exponential-opportunity (EO) model, the logarithmic-
opportunity (LO) model and the gravity (GR) model.  
 
Having all the assumptions, the proposed GO model is therefore: 
 

 [ ]∑
k

k
id

k
d

k
i

k
d

k
ikid  f.B.A.D.O.b =T                       where:              (21) 

 
Ai and Bd are defined as equations (4) 
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 the (Ω,Φ) parameters were chosen, in advance, externally to the main calibration 
process. 

 
 the (ε,µ) transformation is defined by equations (10)−(12). 

 
By substituting equation (3) to (1), the fundamental equation for estimating the transport 
demand model based on traffic counts is: 

 
      ( )∑∑=

i d

lk
id

k
id

k
d

k
i

k
d

k
i

k
l p.f.B.A.D.OV                                          (26) 

 
The fundamental equation (26) has been used by many literatures not only to estimate the 
O−D matrices but also to calibrate the transport demand models from traffic count 
information (see Tamin, 1988; Tamin and Willumsen, 1988). Theoretically, having known 
the values of k

lV̂  and lk
idp , k

idT  can then be estimated. Equation (6) is a system of L 
simultaneous equations with only (K) unknown parameter β need to be estimated. The 
problem now is how to estimate the unknown parameters β so that the model reproduces the 
estimated traffic flows as close as possible to the observed traffic counts. 
 
3.2 Estimation Methods 
 
Tamin (1999) explains several types of estimation methods which have been developed so far 
by many researchers are: 
 
 Least-Squares estimation method (LLS or NLLS) 
 Maximum-Likelihood estimation method (ML) 
 Bayes-Inference estimation method (BI) 
 Maximum-Entropy estimation method (ME) 

 
3.2.1 Least-Squares estimation method (LS) 
 
Tamin (1988,2000) have developed several Least-Squares (LS) estimation methods of which 
its mathematical problem can be represented as equation (27). 
 

to minimize                   ( )∑ 



 −=

l

2k
l

k
l VV̂S                                                   (27) 

k
lV̂ = observed traffic flows for mode k     k

lV = estimated traffic flows for mode k 
 
The main idea behind this estimation method is that we try to calibrate the unknown 
parameters of the postulated model so that to minimize the deviations or differences between 
the traffic flows estimated by the calibrated model and the observed flows. Having substituted 
equation (26) to (27), the following set of equation is required in order to find an unknown 
parameter β which minimizes equation (27): 

 

    0p.
β
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l i d
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δ
δ ∑ ∑∑∑∑                 (28) 
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Equation (28) is an equation which has only one (1) unknown parameter β need to be 
estimated. Then it is possible to determine uniquely all the parameters, provided that L>1. 
Newton−Raphson’s method combined with the Gauss−Jordan Matrix Elimination technique 
can then be used to solve equation (28) (see Batty, 1976; Wilson and Bennet, 1985). 
 
The LS estimation method can be classified into two: Linear-Least-Squares (LLS) and Non-
Linear-Least-Squares (NLLS) estimation methods. Tamin (1988) has concluded that the 
NLLS estimation method requires longer processing time for the same amount of parameters. 
This may due to that the NLLS estimation method contains a more complicated algebra 
compared to the LLS so that it requires longer time to process. However, the NLLS 
estimation method allows us to use the more realistic transport demand model in representing 
the trip-making behaviour. Therefore, in general, the NLLS provides better results compared 
to the LLS. 
 
3.2.2 Maximum-Likelihood estimation method (ML) 
 
Tamin (1988,2000) have also developed an estimation method which tries to maximise the 
probability as expressed in equation (29). The framework of the ML estimation method is that 
the choice of the hypothesis H maximising equation (9) subject to a particular constraint, will 
yield a distribution of k

lV  giving the best possible fit to the survey data ( k
lV̂ ). The objective 

function for this framework is expressed as:  
 

  to maximize                    ∏=
l

V̂
l

k
lp.cL                                                        (29) 

 
subject to:                    0V̂V

l

k
T

k
l =−∑                                                         (30) 

where: k
TV̂  = total observed traffic flows    c  = constant                pl   = 

k
T

k
l

V̂
V   

 
By substituting equation (26) to (29), finally, the objective function of ML estimation method 
can then be expressed as equation (11) with respect to unknown parameters β and θ. 
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= ∑ ∑∑∑∑  (31) 

 
The purpose of an additional parameter θ, which appears in equation (31), is that to ensure the 
constraint equation (30) should always be satisfied. In order to determine uniquely parameter 
β of the GR model together with an additional parameter θ, which maximizes equation (31), 
the following two sets of equations are then required. They are as follows: 
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0V̂p.T.θ
θ

L
i d

k
T

lk
id

k
id

1 =



 −−=

δ
δ ∑∑                                       (32b) 

 
Equation (32ab) is in effect a system of two (2) simultaneous equations which has two (2) 
unknown parameters β and θ need to be estimated.  
 
3.2.3 Bayes-Inference estimation method (BI) 
 
The main idea behind the Bayes-Inference estimation method is by combining the prior 
beliefs and observations will produce posterior beliefs. If one has 100% confidence in one’s 
prior belief then no random observations, however remarkable, will change one’s opinions 
and the posterior will be identical to the prior beliefs. If, on the other hand, one has little 
confidence in the prior beliefs, the observations will then play the dominant role in 
determining the posterior beliefs. In other words, prior beliefs are modified by observations to 
produce posterior beliefs; the stronger the prior beliefs, the less influence the observations 
will have to produce the posterior beliefs.  
 
The objective function of the Bayes-Inference (BI) estimation method can be expressed as: 

 
to maximize                BI ( k

l
k
l Vτ ) ( )∑=

l

k
le

k
l VlogV̂                                               (33) 

 
By substituting equation (26) to (33), the objective function can then be rewritten as:  

 

to maximize                  ∑ ∑∑ 
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l i d
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k
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k
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In order to determine uniquely parameter β of the GR model, which maximizes equation (34), 
the following two sets of equations are then required. They are as follows: 
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Equation (35) is an equation which has one (1) unknown parameter β need to be estimated.  
 
3.2.4 Maximum-Entropy estimation method (ME) 
 
Tamin (1998) has developed the maximum-entropy approach to calibrate the unknown 
parameters of gravity model. Now, this approach is used to develop procedure to calibrate the 
unknown parameters of the transport demand model based on traffic count information. The 
basic of the method is to accept that all micro states consistent with our information about 
macro states are equally likely to occur.  
 
Wilson (1970) explains that the number of micro states W{ k

lV } associated with the meso 
state k

lV  is given by: 
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[ ]
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=

l

k
l

k
Tk

l !V
!V

VW                                                        (36) 

 
As it is assumed that all micro states are equally likely, the most probable meso state would 
be the one that can be generated in a greater number of ways. Therefore, what is needed is a 
technique to identify the values [ k

lV ] which maximize W in equation (36). For convenience, 
we seek to maximize a monotonic function of W, namely logeW, as both problems have the 
same maximum. Therefore: 

loge W = loge ∏
l

k
l

k
T

!V
!V = loge !Vk

T  −∑
l

k
le !Vlog                                  (37) 

 
Using Stirling’s approximation for logeX! ≈ XlogeX−X, equation (37) can then be simplified 
as: 

loge W = loge !Vk
T  − ( )∑ −

l

k
l

k
le

k
l VVlogV                                      (38) 

 
Using the term loge !Vk

T  is a constant; therefore it can be omitted from the optimization 
problem. The rest of the equation is often referred to as the entropy function. 
 

loge W’ = − ( )∑ −
l

k
l

k
le

k
l VVlogV                                             (39) 

 
By maximising equation (39), subject to constraints corresponding to our knowledge about 
the macro states, enables us to generate models to estimate the most likely meso states (in this 
case the most likely k

lV ). The key to this model generation method is, therefore, the 
identification of suitable micro-, meso- and macro-state descriptions, together with the macro-
level constraints that must be met by the solution to the optimisation problem. In some cases, 
there may be additional information in the form of prior or old values of the meso states, for 
example observed traffic counts ( k

lV̂ ). The revised objective function becomes: 
 

loge W’’ = −∑ 
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Equation (40) is an interesting function in which each element in the summation takes the 
value zero if k

l
k
l V̂V =  and otherwise is a positive value which increases with the difference 

between k
lV and k

lV̂ . The greater the differences, the smaller the value of loge W’’. 
Therefore, loge W’’ is a good measure of the difference between k

lV and k
lV̂ . Mathematically, 

the objective function of the ME estimation method can be expressed as: 
 

to maximise      E1 = loge W’’ = −∑ 
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In order to determine uniquely parameter β of the GR model which maximizes the equation 
(41), the following equation is then required. They are as follows: 
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TE                        (42) 

 
Equation (42) is an equation which has only one (1) unknown parameter β need to be 
estimated.  
 
3.2.5 Test case with Bandung traffic count data  
 
The real data set of urban traffic movement in Bandung in terms of traffic count information 
was used to validate the proposed estimation methods. Bandung is a capital of West Java 
Province and its population is around 6.4 millions in 1998 and expected to increase to 13.8 
millions in 2020. The total area of Bandung is around 325,096 Ha and is divided into 66 
kecamatans and 590 kelurahans. The study area was divided into 146 zones of which 140 are 
internal zones and 6 are external. The road network of the study area consisted of 653 nodes and 
1,811 road links. There are 95 observed traffic counts ( lV̂ ), traffic generation and attraction (Oi 
and Dd) for each zone, and an observed O-D matrix for comparison purpose. The units used in 
equation (26) are as follows: 
 

lV̂   = traffic counts in vehicles/hour 
Oi, Dd  = trip generation/attraction for each zone in vehicles/hour 
 
In order to establish the strategy for validity tests, it is necessary to introduce at this stage the 
main issues affecting the accuracy of the estimated O-D matrix produced by the calibrated 
models. These are as follows: 
 
 the choice of the transport demand model itself to be used in representing the trip 

behaviour within the study area or, perhaps, a system of the real world; 
 the estimation method used to calibrate the parameters of the transport model from 

traffic count information; 
 number of traffic count information; 
 the level of errors in traffic counts; and 
 the level of resolution of the zoning system and the network definition. 

 
The validity and sensitivity tests can then be established from these five main issues. Two 
transport demand models, namely gravity (GR) and gravity-opportunity (GO) models, and 
four estimation methods (NLLS, ML, BI, ME) have been used in the validity tests. The four 
estimation methods mentioned above have been discussed in detail in section 3.2. The value 
of R2 statistic as expressed in equation (43) is used to compare the observed and estimated 
O−D matrices to ascertain how close they are. 
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3.2.6 The best location of traffic counts 
 
It is mentioned that the unconventional method uses traffic count information as the main 
input for estimating the O-D matrices. Because of that, any process regarding the traffic 
counts should be clearly and deeply understood in order to obtain the best estimates of O-D 
matrices; especially those which are related to data collection process e.g. number of traffic 
counts and their best locations. The data collection process is very important since it is the 
first action in the whole process of O-D matrix estimation. Some basic analysis used in 
finding the best location are as follows: 
 
a. Proportion of trip interchanges on a particular link 

The total volume of flow in a particular link l ( lV
∧

) is the summation of the contributions of 
all trip interchanges between zones within the study area to that link. Mathematically, it can 
be expressed as equation (4). Tamin (2000) stated that the most important stage for the 
estimation of O-D matrix from traffic counts is to identify the paths followed by the trips from 
each origin i to each destination d.  
 
In other words, the proportion of trip interchanges between zone i and zone d have to be 
uniquely identified for all those links involved. In this case, the variable pl

id is used to define 
the proportion of trip interchanges from origin i to destination d travelling through link l. 
Therefore, in finding the best location, the traffic counts having many information of the trip 
interchanges should be chosen. This information can be identified by analysing the total 
number and value of pl

id in each link. This information will then be taken as the main criteria 
in determining choosing the best location of traffic counts. 
 
b. Inter-link relationship 
 
 Inter-dependence . Figure 2 shows that flows on link 5–6 are the summation of flows 

on link 1–5 and on link 2–5, then there is no additional information can be extracted by 
counting flows on link 5–6 because of the flow continuity condition, V56= V15 + V25.  

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

Figure 2. A simple network with link counts (Tamin, 2000) 
 

In principle, we need counts for only 3 (three) independent counts in order to find the 
flows of all links in Figure 2. Therefore, from an economic point of view, some efforts 
are needed in choosing the appropriate links to be counted. 

1 

2 

5 6 

3 

4 
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 V25 

 V56 

 V63

 V64
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 Inconsistency. In practice, the problem of inconsistency in link counts may arise when 
the flow continuity conditions are not satisfied by the observed volumes. In the case of 
Figure 3, it may well happen that the observed flows are such that: 

 
     V56 ≠ V15 + V25                                                    (44) 

                               or 
 V15  + V25 ≠ V63 + V64                                                                      (45) 

 
This inconsistency in counts may arise due to human or counting errors and counting at 
different times or dates. As a result of all this, no solution for the OD matrix can be 
estimated that reproduces all these inconsistent traffic counts. One possible way to 
remove this problem is by choosing only independent links for counted. 

 
c. Optimum number of traffic counts  
 
Equation (26) is the fundamental equation developed for estimating the O-D matrices from 
traffic counts information. In this model, the parameters pl

id are estimated using traffic 
assgnment technique. Given all the pl

id and all the observed traffic counts ( lV̂ ), then there 
will be N2 buah Tid’s to be estimated from a set of L simultaneous linear equations (1) where 
L is the total number of traffic counts.  
 
In principle, N2 independent and consistent traffic counts are required in order to determine 
uniquely the O-D matrix [Tid]; [N2−N] if intrazonal trips can be disregarded. In practice, the 
number of observed traffic counts is much less than the number of unknowns idT ’s. 
Therefore, it is impossible to determine uniquely the solution.  
 
d. The determination of the optimum number of traffic counts  
 
As mentioned above, the determination of the optimum number of traffic count will be 
conducted under 1 (one) condition representing the sensitivity between the number of  traffic 
counts and the link rank to the accuracy of the estimated O-D matrices, namely: random 
condition. In this condition, several combinations of traffic counts will be created based on 
random selection. Each combination of traffic counts will then be used to estimate the O-D 
matrices.  
 
In this research, the initial O-D matrix was created by calibrating the Gravity-Opportunity 
(GO) model from traffic counts by using all selected links (646 links). Tamin et al (2001) 
reports that the best of values of parameters (ε and µ) are ε=0,4 and µ=1,0 for the GO model. 
The other unknown parameters (α and β) of the GO model were then calibrated using 646 
selected traffic counts by using Non-Linear-Least-Squares (NLLS) estimation method.  
 
The initial O-D matrix to be used for comparison purposes will then be created using the GO 
model together with the values of its calibrated parameters. Figure 3 show the relationship 
between the level of accuracy of the estimated matrices compared to the initial one and the 
number of selected traffic counts under random condition. 
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CONDITION II (RANDOM)
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Figure 3: Number of traffic counts and the value of R2 (random condition) 

 
It can be seen from Figure 3 that the use of 90 links has reproduced the relatively high 
accuracy of estimated OD matrices compared to the initial one (in terms of R2). The use of 90 
links has relatively the same accuracy with the use of 646 links. It can be concluded that the 
optimum number of traffic counts is 90 links (14% of 646 selected links or 3.6% of 2485 
available links).  
 
3.2.7 Important findings 
 
Several important findings can be concluded as given in Table 2, which shows the 
performance ranking of model’s estimation method according to specified criteria. The 
purpose of this table is to provide guidance to choose the best overall model’s estimation 
method regarding its behaviour to several criteria such as: accuracy, computer time, 
sensitivity to errors in traffic counts, sensitivity to zoning level and network solution, and 
sensitivity to number of traffic counts. The ranking scale ranging from 1 to 8 will be used to 
see the performance of estimation methods based on the above criteria. Scale 1 shows the 
worst performance, while scale 8 shows the best performance. 

 
Table 2. Performance ranking of model estimation methods for specified criteria 

Criteria 
Model and 
estimation 
methods Accuracy Computer 

time 

Sensitivity to 
errors in 

traffic counts 

Sensitivity to 
zoning level and 

network 
resolution 

Sensitivity to 
number of 

traffic counts 

GR 

NLLS 
ML 
BI 
ME 

5 
2 
1 
6 

8 
6 
6 
5 

7 
6 
5 
8 

7 
8 
5 
6 

3 
2 
1 
4 

GO 

NLLS 
ML 
BI 
ME 

7 
4 
3 
8 

4 
2 
3 
2 

NA  
NA 
NA 
NA 

NA 
NA 
NA 
NA 

7 
6 
5 
8 
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It can be seen from Table 2 that in terms of accuracy and sensitivity to number of traffic 
counts criteria, the GO model together with ME estimation performs the best. While, in terms 
of computer time, sensitivity to errors in traffic counts, sensitivity to zoning level and network 
resolution, the GR model with NLLS estimation performs the best. In general, it can be 
concluded that the ME and NLLS estimation methods show the best ranking performance 
based on several types of criteria. 
  
Table 3 shows the estimated values of parameters of GO model together with their 
corresponding values of objective functions for each estimation method and Table 4 shows 
the values of R2 statistic of the observed O-D matrix compared with the estimated O-D 
matrices obtained from traffic counts. 

 
Table 3. The estimated values of GO parameters and their values of objective functions 

 Estimation methods α β Values of objective function 
1 NLLS 0.0041986 1.4796100 56197550.00 
2 ML 0.0052000 1.7637550 423379.60 
3 BI 0.0036893 0.979643 478944.40 
4 ME 0.0050000 1.3867280 -32715.32 

 
Table 4. The value of R2 for the comparison of the observed and estimated O−D matrices  

Estimation methods Transport 
Model NLLS ML BI ME 

GR 0.45123 0.38645 0.37254 0.45434 
GO 0.47447 0.40733 0.39445 0.47734 

 
Some conclusions can also be drawn from Table 4. They are as follows: 
 
 in terms of O-D matrix level, it was found that the GO model always produced the best 

estimated matrices. However, these are only marginally better than those obtained by 
the GR model. Taking into account the results of using other criteria, it can be 
concluded that the best overall estimation methods are the combination of GO model 
with ME estimation method. 

 
 with evidence so far, it was found that the estimated models and therefore O-D matrices 

are only slightly less accurate than those obtained directly from the full O-D surveys. 
This finding concludes that the transport demand model estimation approach is found 
encouraging in term of data collection and transport model estimation costs. 

 
 
4. CONCLUSIONS 
 
The paper explains the development of Maximum-Entropy estimation method to calibrate the 
parameters of transport demand models from traffic counts information. Some conclusions 
can be drawn from the results obtained: 

 
 the number of observed traffic counts required are at least as many as the number of  

parameters. The more traffic counts you have, the more accurate the estimated O-D 
matrix. From several application, it can be concluded that the optimal number of traffic 
counts required is between 25−30% of total number of links in the network. 
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 It is found that in terms of accuracy and sensitivity to number of traffic counts criteria, 
the GO model together with ME estimation performs the best. While, in terms of 
computer time, sensitivity to errors in traffic counts, sensitivity to zoning level and 
network resolution, the GR model with NLLS estimation performs the best. However, 
in general, it can be concluded that the ME and NLLS estimation methods show the best 
ranking performance based on several types of criteria. 

 
 The calibrated model can then be used to forecast the future O-D matrices. 

 
 The results are encouraging since the estimated O-D matrices obtained using traffic 

count information are only marginally worse than those obtained by full O-D survey. 
 
 The level of accuracy of the estimated O-D matrices depends on some following 

factors: 
a.  the transport demand model itself in representing the trip making behaviour within 

the study area; 
b. the estimation method used to calibrate the model from traffic counts; 
c. trip assignment techniques used in determining the routes taken through the 

network; 
d. location and number of traffic counts; 
e. errors in traffic count information; 
f. finally, the level of resolution of the zoning system and the network definition.  
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