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Abstract: A primary study of railway operations is the calculation of train dynamics under
different operation regimes, including powering, constant speed, coasting, and braking. Due
to the reason that forces affecting train movement are complicated, it is hard to calculate train
dynamics analytically and thus, numerical methods are widely used in railway industries to
simulate train movement. Unlike previous studies, this paper tries to derive analytical
solutions for predicting train dynamics under coasting operation. The analytical model
provides a quick way to analyze train coasting behaviors. Since the solutions are exact, they
can be used to validate the results from numerical methods and to facilitate the development
of train performance simulators.
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1. INTRODUCTION

One of the basic planning tasks for railway operation is to simulate the movement of a train
along a rail line. Under different circumstances, the train may alternate operation modes to
move from origin to destination, including powering, coasting, constant speed, and braking.
During the course of the movement, the train dynamics (i.e., the changes of train position,
velocity, and acceleration with respect to the change of time) are governed by Newton’s
Second Law of Motion, which is the second-order ordinary differential equation (ODE) of
distance with respect to time. An intuitive approach to solve the ODE is to integrate it over
time. Unfortunately, forces that influence train movement are not explicit functions of time.
On the contrary, most of them are velocity dependent. Consequently, railway industries
employ numerical methods to approximate the solutions. The algorithms all assume that the
net force acting on the train is constant over a short section and then use iterative
computational cycles based on time, distance, or velocity increments to calculate train
dynamics (Howard, 1983). For example, AREMA (1999) and Andrews (1986) suggest a
velocity increment worksheet for such calculations. Kikuchi (1991) uses distance increment
method to simulate train travel on a rail transit line. Capillas (1987), Goodman (1987), and
Uher (1987) adopt a time increment approach. A similar time-based scheme can also be found
in Rakha (2001) for predicting maximum truck acceleration performance on grades.

The algorithms mentioned above can be carried out by hand calculations or computer
programs (i.e., train performance simulator). The velocity increment worksheet has been
widely used in railway industries for more than 50 years and only been undertaken by
experienced staff. Recently, with the prevalence of computers, the algorithms are
computerized, mostly based on time increment. Note that train dynamics resulted from
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numerical methods are not precise. The accuracy depends on the magnitude of the increment.
For powering and braking operations, numerical approaches may be inevitable since tractive
effort and braking force may not have precise function forms. However, for coasting
operation, it would be possible to derive analytical solutions. This paper presents such a
model for estimating the theoretical values of train coasting dynamics. The analytical
solutions can be used to validate the results from a train performance simulator and to analyze
the errors of different numerical methods.

2. TRAIN DYNAMIC MODEL FOR COASTING OPERATIONS

The forces acting on a moving train may include tractive effort, train running resistance,
alignment resistance, and braking force. Tractive effort provides the propulsion to overcome
resistances and to accelerate the train. Running resistance is the force opposing the movement
of the train. Alignment resistance is composed of grade resistance and curve resistance. Both
are due to the geometry of railway alignment. Braking force is used to decelerate the train and
to bring it to full stop. For coasting operation, the tractive effort and braking force of the train
are cut off. Therefore, only running and alignment resistances are in effect. Each of them is
discussed in the following subsections. Finally, the equation of motion that governs the
behavior of coasting operation is presented.

2.1 Running Resistance

Train running resistance is caused by many factors and is very complex. The analysis of
running resistance is usually decomposed into individual components. Vuchic (1981)
classified it into two main categories: basic resistance and air resistance, as shown in Figure 1.
The first one is purely mechanical and can be further decomposed into rolling resistance and
way resistance. However, they are rarely analyzed separately since individual resistances
usually cannot be measured precisely. Experimental studies indicate that some portion of
basic resistance is constant at all speeds, while the other is proportional to train velocity. On
the other hand, air resistance depends on the square of the relative velocity of train to air,
which is equal to train velocity in still air.
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Figure 1 The Composition of Train Running Resistance

92

Proceedings of the Eastern Asia Society for Transportation Studies,  Vol.4,  October,  2003



Running resistance is obtained by summing all individual elements together and can be
expressed as the following quadratic form of train velocity:

2CVBVARr ++= (1)

where: rR  = running resistance (N)
A , B , C  = positive constants for a specific train (usually obtained from field tests

or provided by train manufactories)
V  = train velocity (km/h)

Since most of train resistances vary with trainload, it is convenient to express them through
resistance coefficients, which are defined as the resistance in N per kN weight of the train.
Thus, equation (1) can be further rewritten as

WcVbVaWrR rr )( 2++== (2)

where: rr  = coefficient of running resistance (‰)
W  = train weight (kN)
a , b , c  = positive constants; WAa = , WBb = , and WCc =

2.2 Alignment Resistance

Alignment resistance includes grade resistance and curve resistance. The former can be
computed exactly, whereas the latter is obtained empirically.

1. Grade Resistance
Figure 2 shows that the gravity force of a train on a grade can be resolved into two
components: the force along the slope and the force normal to the incline. The former creates
a resistance to the movement of the train and is defined as grade resistance. From simple
trigonometry, it can be shown that grade resistance is

θsin1000WRg = (3)

where: gR  = grade resistance (N)
θ  = slope (°)

W θcosW
θ

θsinW

Figure 2 The Illustration of Grade Resistance

For railway alignments, θ  is usually very small and for such values, θθ tansin ≈ . Let gr
be the coefficient of grade resistance (‰). Then θtan1000=gr  and equation (3) may be
rewritten as
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WrR gg = (4)

Note that grade resistance is only a general term. It is not necessarily a resistance to train
motion. The actual effect depends on the sign of θ . For 0>θ , which indicates an incline,
grade resistance is in the opposite direction of train movement. On the other hand, for 0<θ ,
which represents a decline, grade resistance is in the same direction of train movement and
can contribute to train acceleration. If, however, 0=θ  (i.e., a level alignment), then grade
resistance is neither an accelerating force nor a decelerating force for the train.

2. Curve Resistance
When a train runs in a curve, its instantaneous moving direction is tangent to the curve. Since
rail tracks force the train to travel along the curve, the centrifugal force acting on the train and
the friction between wheels and tracks produce extra resistance to train movement. The
additional resistance is called curve resistance, which can be expressed as

WrR cc = (5)

where: cR  = curve resistance (N)

cr  = coefficient of curve resistance (‰)

The coefficient of curve resistance cr  depends on the friction coefficient, the gauge, the
distance between axles in vehicles, and the radius of the curve. It usually increases as the
increases of gauge, axle distance, and friction coefficient, but decreases as radius increases.
For a specific rail system, the above factors are considered to be known data except radius,
which varies with alignment geometry. Hence, cr  can be expressed as a constant K
multiplied by the reciprocal of the radius γ  (m), i.e.,

 
γ
Krc = (6)

The typical value of K  in equation (6) ranges from 500 to 800, depending on rail systems.
Some of them are listed in Table 1. Note that different K  values do not make big differences
in computing cr . For example, when the radius of a curve is 300 m (which is very small for
rail systems), the difference between the resulting cr  for 500=K  and 800=K  is only 1‰.
When the radius is 3000 m, the difference is even as small as 0.1‰!

3. Equivalent Grade
Since gr  and cr  are independent of train velocity and both are in ‰, it is convenient to add
them together. Let er  denote the sum of gr  and cr , i.e.,

cge rrr += (7)

Then er  represents the coefficient of total alignment resistance and is called “Equivalent
Grade” (Hay, 1982). A train travels on a grade of gr  with a curve resistance coefficient cr  is
equivalent to traveling on a grade of cge rrr += .
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Table 1 The Typical Values of K  in Computing Curve Resistance Coefficient
Rail System The Value of K

SNCF 800
Japan 800
AREMA 700
China 700
Department of Rapid Transit Systems, Taipei City Government 700
Taiwan Railway Administration (TRA) 600
IR Universalformel 516
RFFS Universalformel 505

2.3 Total Resistance

The total resistance to the motion of a train, denoted by tR  (N), is the sum of running
resistance and alignment resistance

WrrrRRRR cgrcgrt )( ++=++= (8)

Let tr  be the coefficient of total resistance (‰). Then

ecgrt rcVbVarrrr +++=++= 2 (9)

Since er  is independent of V , it can be added to the constant term a . Let era +=α . Then

tr  can be further expressed as follows:

2cVbVrt ++= α (10)

Note that tr  only makes sense for 0≥V  because train speed cannot be negative. However, it
might be interesting to investigate its mathematical properties for the entire range of V .
Since VcVrt ∀>=′′ ,0)( , tr  is convex and there exists

0
2

* <−=
c
bV  (the root of 0)( =′ Vrt ) (11)

such that ** ),()( VVVrVr tt ≠∀< and the global minimum is

c
bcVrt 4

4)(
2

* −= α (12)

For a level and straight alignment (i.e., 0== cg rr ), tr  is identical to rr . In such a case, the

constant α  is usually much greater than b  and c  for rail trains. Therefore, 042 <− cb α
and tr  does not have any real roots. For a specific 0<er , it might be possible that

042 =− cb α  and tr  has exactly one real root equal to *V . If 0<<er  (i.e., a steep
downgrade), then 042 >− cb α  and the curve of total resistance coefficient crosses the
abscissa at two distinct points. This means that tr  has two real roots and their values are
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given by ccbb 2)4( 2 α−±− . The smaller one ccbb 2)4( 2 α−−−  is always negative,

but the bigger one ccbb 2)4( 2 α−+−  may be a positive number. In case that the root is
greater than zero, it is defined as “Balancing Speed”, a speed at which the net force acting on
the train is equal to zero. Balancing speed plays an important role in train operation. If a train
travels at a speed greater than balancing speed, the train will decelerate down to balancing
speed and then maintain at that speed. On the other hand, if the train operates at a speed less
than balancing speed, the train will accelerate until its speed reaches balancing speed.

The tr  curves in the three situations of 042 >− cb α , 042 =− cb α , and 042 <− cb α  are
well explained in Figure 3. The figure clearly shows that when a train travels on a steep
decline, the total resistance may be negative. In such a case the total resistance is in the same
direction of train movement and the train is able to accelerate without tractive effort (i.e.,
coasting results in train acceleration).

V

tr
042 <− cb α

042 =− cb α

042 >− cb αNo real roots

Exact one real root

Two real roots

0=er

0<er

0<<er

c
cbb

2
42 α−+−

c
cbb

2
42 α−−−

Figure 3 The effect of er  on the Mathematical Properties of tr  Curve

2.4 Equation of Motion for Coasting Operation

Coasting is widely utilized in daily train operation for energy savings and to provide slack
time for a late train to catch up its schedules by using full performance. When a train starts
coasting operation, its tractive effort is turned off and the only force acting on the train is
resistance. Let M  be the static mass of the train in kg and assume that the train moves in the
positive direction. Then Newton’s Second Law of Motion states

dt
dvMRt ρ=− (13)

where v  is train velocity in m/s and t  is time in s. Since the rotating parts of a train, such as
wheels, rollers and transmission gears may store energy gained from the force applying to the
train, the parameter ρ  ( 1>ρ ) is used to account for the rotating mass of the train and Mρ
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is called “Equivalent Mass” (Andrews, 1986). The typical value of ρ  is in between 1.04 and
1.10 (Vuchic, 1981).

Plugging equations (8) into (13) and converting the unit of speed from m/s to km/h yield

dt
dV

g
WWcVbV

6.3
1000)( 2 ρα =++− (14)

Canceling out W  on both sides of equation (14) and substituting 9.81 m/s2 for gravity
acceleration g  lead to

dt
dVcVbV =++− )(

32.28
1 2α

ρ (15)

Equation (15) will be used latter to derive the analytical solutions to train coasting dynamics.

3. ANALYTICAL SOLUTIONS TO TRAIN COASTING OPERATIONS

3.1 Fundamentals of The Solution Approach

The train dynamics under coasting operation are governed by equation (13). Since dtdsv = ,
the equation of motion is the second-order ODE of s  with respect to t . A direct method to
solve such an ODE is to integrate it over t . But this does not work for equation (13). The
difficulty arises from the fact that tR  is not an explicit function of t . It can be seen from
equation (14) that tR  is velocity dependent. That is the main reason that previous studies
adopt numerical methods to approximate the solutions.

To solve equation (13) analytically, the independent variable must be changed from t  to v .
Assume that a force )(vF (N) acts on an object of mass m  (kg). Rearranging the equation of
motion and integrate it over v  gives

�� == dv
vF

mdtt
)(

1
(16)

By definition, Fvdvvdtds ==  and we obtain

�� == dv
vF
vmdss

)( (17)

Both equations (16) and (17) take v  as the independent variable for the integration.
Therefore, they can be used to solve train running time and running distance, given train
velocities.

3.2 Analytical Solutions to Train Running Time

Rewriting equation (15) in the form of equation (16) yields

97

Proceedings of the Eastern Asia Society for Transportation Studies,  Vol.4,  October,  2003



dV
cVbV

t � ++
−= 2

132.28
α

ρ (18)

The results of the integration depend on the sign of cb α42 − . If 042 >− cb α , then equation
(18) can be rewritten as

( ) ( ) dVVc
t

c
cb

c
b

�
−−+

−= 2

2
42

2
2

132.28
α

ρ
(19)

By decomposing the function inside the integration

( ) ( ) �
�

�

�

�
�

�

�

++
−

−+
=

−+ −−−−
c
cb

c
b

c
cb

c
b

c
cb

c
cb

c
b VVV 2

4
22

4
2

42

2
42

2

2222

1111
αααα

(20)

It is easy to verify that

02

2

2 42
42ln

4
32.28 t

cbbcV
cbbcV

cb
t +

−++
−−+

−
−=

α
α

α
ρ

(21)

If 042 =− cb α , then 22 )2( cbVccVbV +=++α  and the result of (18) is

( ) 022
2

2
64.56)(132.28 t
bcV

Vd
Vc

t c
b

c
b

+
+

=+
+

−= �
ρρ

(22)

If 042 <− cb α , then equation (18) is rewritten as

( ) ( ) dVVc
t

c
bc

c
b

�
−++

−= 2

2
42

2
2

132.28
α

ρ
(23)

and the result of the integration is

02

1

2 4
2tan

4
64.56 t

bc
bcV

bc
t +

−

+

−

−= −

αα
ρ

(24)

Equations (21), (22), and (24) express train running time as functions of train velocity. Hence,
they can be used to forecast train running time at different speeds.

3.3 Analytical Solutions to Train Running Distance

Following equations (15) and (17), we obtain

dV
cVbV

Vs � ++
−= 287.7

α
ρ (25)

Using the technique of integration by part, equation (25) can be rewritten as
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(26)

Substituting equations (21), (22), and (24) for t , we obtain the following results:
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(27)

The above equation describes running distance in functions of velocity and thus, can be used
to calculate train position at different speeds.

4. AN EXAMPLE

A push-pull train of Taiwan Railway Administration (TRA) is employed here to demonstrate
the analytical model developed in the previous section for predicting coasting dynamics on
different grades. The train is the primary intercity passenger train of TRA that serves the west
coast of Taiwan. It is made up with two electric locomotives of E1000 type on each end and
several passenger cars in between them. The pair of the locomotives is 120 ton in weight
(1176.84 kN) and each passenger car is 35 ton in weight (343.2 kN). The speed limit of the
train is 130 km/h and the equivalent mass ratio ρ  is 1.06.

Assume that a pair of locomotives hauls 12 passenger cars to form a train. Then the total
weight of the train is 5295.8 kN and the coefficient of running resistance is

2000303.000897.03467.1 VVrr ++= (28)

At the beginning, it is assumed that train position and accumulative running time are zero. In
order to analyze the effects of grades on coasting behaviors, train dynamics on different
grades are calculated, where the initial velocities of the train are set to 130 km/h or 30 km/h.

Using the analytical model presented in the previous section, we are able to calculate train
position and running time with respect to velocity. Figure 4 plots the relation between
velocity and running time for grades from -20‰ to 20‰ with an increment of 5‰. It shows
that on grades below -5‰, coasting results in acceleration for initial velocity = 30 km/h and
the acceleration rate increases as the grade decreases (i.e., a steeper downgrade). On the other
hand, for initial velocity = 130 km/h, coasting leads to deceleration on grades above -5‰, and
the deceleration rate (i.e., negative acceleration rate) increases as the grades increases. A
similar relation between train velocity and position is also given in Figure 5, where the
velocity curve to distance is relatively nonlinear as compared with that to running time.
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Figure 4 Velocity Curve to Running Time for Different Grades
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Figure 5 Velocity Curve to Train Position for Different Grades

Both Figure 4 and Figure 5 indicate that on grade of -5‰, the train decelerates if its initial
velocity is 130 km/h, but accelerates in case of 30 km/h. An interesting question would be
what is the balancing speed on grade of -5‰. To answer this question, we may simulate train
movement over a sufficient long time or distance. Suppose that the train coasts from different
initial velocities. Using the analytical model developed in section 3, we can calculate train
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dynamics for each initial condition. The velocity curves with respect to running time and
running distance are plotted in Figure 6 and Figure 7, respectively. It can be seen that each
curve converges to 96 km/h, which represents the balancing speed on grade of -5‰. Any
initial velocity differs from it will result in acceleration or deceleration until train velocity
reaches 96 km/h.
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Figure 6 Velocity Curves to Running Time for Different Initial Conditions
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Figure 7 Velocity Curves to Train Position for Different Initial Conditions
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Another approach to calculate balancing speed for coasting operation is to find the positive
root of the total resistance coefficient. Figure 8 depicts the coefficient of total resistance on
grade of -5‰. It can be shown that the positive root ccbb 2)4( 2 α−+−  is also 96 km/h.
The result is consistent with Figure 6 and Figure 7.
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Figure 8 The Coefficient of Total Resistance on Grade of -5‰

5. CONCULSION REMARKS

Traditional methods for analyzing train movement use iterative computation cycles based on
the increments of time, distance or velocity. These numerical approaches require heavy
computations that are tedious for hand calculations. Although all algorithms can be
computerized, a robust program still takes time to develop and the results are only
approximate. Therefore, this paper develops an analytical model to facilitate the analysis. The
model provides a convenient way to forecast train coasting dynamics. The solutions are
precise mathematically and thus, can be used to validate the results from numerical programs.
In addition, the analytical solutions can be extended to estimate train dynamics under
powering or braking operations provided that quadratic functions of velocity approximate
tractive effort and braking force with acceptable accuracy.
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