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ABSTRACT 
This paper experiences a three-phrase back-propagation neural network approach to forecast 
short-term railway passenger demand. The first phase involves the selection of variables, 
the size of training data set, and the modification of stochastic outliers, under a specific 
origin-destination (O/D) pair of a given train service. In the second phase, in order to verify 
the robustness of developed approach, we construct two aggregated models, in which each 
model applies different temporal aggregations of demand. In the third phase, we construct 
three integrated models by considering multiple train services simultaneously to enhance 
the future application. The approach shows encouraging results and most forecasting 
performances are under 20% of mean absolute percentage error (MAPE). In addition, the 
approach is able to forecast railway passenger demand effectively under various scenarios 
of train services. The outcomes of the models can offer detailed demand prediction for 
railway operation planning, such as train scheduling and seat allocations. 
 
Key Words: Short-term Forecasting, Railway Passenger demand, Back-propagation Neural 
Network. 
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1. INTRODUCTION 
Short-term forecasting is important for dealing with the daily operational problem in many 
practical fields. (Davis, G. A. et al., 1990; Smith and Demetsky, 1994; Dougherty and 
Cobbett, 1997; Ledoux, 1997) construct respective short-term traffic forecasting models to 
help traffic control centers adopt appropriate strategies for avoiding traffic congestion. (Sun, 
X. et al., 1997) constructs a passenger-forecasting model to implement seat allocation and 
yield management for maximizing revenues. (Peng, T. M. et al., 1992; Charytoniuk and 
Chen, 2000) construct load-forecasting models to predict the hourly load demand for 
establishing the power supply policy. (Atiya, A. et al., 1997) conducts a monthly 
flow-forecasting model to predict the potential damage of flood for establishing the 
agriculture water supply policy. All of these models suggest the essentiality and importance 
of short-term demand forecasting when considering short-term operational plans. For 
railway companies, if an effective demand forecasting model is available, it is helpful to 
conduct appropriate strategies for coping with daily operational problems. 
 
Railway passenger demand is dynamic over time and space, and its pattern is hard to 
capture. Each origin-destination (O/D) pair has its own daily, weekly, and seasonally 
demand trait. It is obviously not a static phenomenon. However, most daily operational 
activities are carried out based on the static demand information. Taking seat allocation as 
an example, it is pre-set and inflexible, no matter what the day of week is, and no matter 
whether the peak season it is in or not, the number of seat allocation for a specific O/D pair 
of a given train service is always the same. Train services and seat allocations yield the 
major product for Taiwan Railway Administration (TRA), but they are apparently not 
maneuvered very well. The load factor of the most popular train service of TRA in 2002 is 
nearly 10 % less than the last year, and it may be worse after the commercial operation of 
Taiwan high speed rail system in two years time. In order to understand passengers demand 
pattern and help operators conduct a passenger-oriented planning, a short-term railway 
passenger demand forecasting model is essential. However, a railway company may have 
hundreds of trains in service every day, and many O/D pairs for each train trip. It is 
definitely not easy to predict the demand of many O/D pairs at the same time, or integrating 
them into a model. 
 
The autoregressive integrated moving average (ARIMA) model is typically applied to cope 
with short-term forecasting problems (Moorthy and Ratcliffe, 1988; Tang, Z. et al., 1991).  
Kalman filtering theory (Okutani, 1984) and nonparametric regression (Davis and Nihan, 
1991), are applied to solve the problem as well. In recent decades, artificial neural networks 
(ANN) is widely applied and attains promising results. Among all ANN structures, 
Back-propagation neural network (BPN) is the most popular, and has been used to solve 
many transportation problems (Dougherty, 1995). BPN stresses the non-linear mapping 
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between dependent variables and independent variables (Zurada, 1995), and has advantages 
of parallel computing, multiple outputs generating, and adaptability to complex situations, 
even without any assumption of data distribution. In this paper, we focus on BPN technique 
to formulate short-term railway passenger demand forecasting models. Three phrases have 
been experienced to achieve the goal. 
 
The first phrase is the construction of the approach and involves three steps: selection of 
variables, adoption of training samples, and modification of outliers. In the short-term 
forecasting, cross section data is usually unavailable, and time series data is usually applied 
to formulate forecasting models. The selection of input variables is essential because the 
more variables applied in a forecasting model, the less efficiency for model learning and 
predicting, and the less potential for future applications. In this paper, we select influential 
variables through the autoregressive function (ACF) to reach efficiency and maintain 
performances. Another reason of inefficiently training by network is the adoption of 
redundant training samples. It is helpful to filter the useless training samples without 
sacrificing performances. After these two experiments, we modify some stochastic and 
unexplained outliers in the series to enhance the performances. In the second phase, a 
peak-morning aggregated model and a daily aggregated model are implemented to verify 
the robustness of the proposed BPN approach. The performances show the proposed 
approach also functions well. In the third phase, an integrated network structure is 
constructed to predict multiple train services at the same time. The overall results 
confidently show the ability of the proposed approach to deal with the complex demand 
problem in the railway transportation. 
 
 
2. PROCEDURE OF BACK-PROPAGATION NEURAL NETWORK 
The basic element of BPN is a node or processing element. Processing elements defined by 
the researching problem constitute layers. Processing elements in different layers connected 
to one and another constitute the whole network structure. The networks used in the study 
involve three layers of nodes, and they are the input layer, the hidden layer, and the output 
layer. The input layer has one or more nodes for each independent variable. The output layer 
has one or more nodes that correspond to the predicted values. The hidden layer consists of 
several nodes that receive inputs from nodes in the input layer and feed their outputs to 
nodes in the output layer. The number of nodes in the hidden layer in the study is simply the 
arithmetic average of the number of nodes in the input layer and that in the output layer. 
Each link between nodes has an associated weight, which represents the strength of the 
connection. Three steps identify the operation of a node, including receiving input signals 
and connection weights, summing up the information, and transforming it by the activation 
function to produce an output signal. The activation function used in the study is the widely 
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used sigmoid function. In the training process, a large number of examples dated before the 
predicting period is required. Using the current weights, BPN computes a set of outputs 
with the example input data. These network outputs are then compared against their 
corresponding values in the example set by computing the sum of square error. After that, 
the weights are updated by a partial derivative function, which propagates the errors back to 
the input layer. If the operation in the learning process is successful, the global error reduces 
gradually, and the process eventually reaches a convergent result. The whole procedure can 
be shown as Figure 1. 

Figure 1: The procedure of back-propagation neural network 

 
Mean Absolute Percentage Error (MAPE), usually applied in evaluating forecasting error, is 
used in the testing phase as the measure for building practical ANN models. The formula is 
shown in equation (1), where ),( kiav  and ),( kipv  are the actual value and predicting 
value of example i for output neuron k respectively. The measure is computed with the testing 
data set, that contains examples in the predicting period. According to [Lewis, 1982], if 
MAPE is within 20%, then the model is categorized as good forecasting. 
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3. DATA PROPERTY 
All analyses reported in the paper are conducted with ticket sales data of TRA on the western 
line of inter-city railway system. The length of western line is 406 kilometers, and it is located 
on the mostly developed area with 95% population of Taiwan. There are 20 stations of A class, 
and many other stations of B and C classes. Major train services on the western line consist of 
limited express, express, ordinary train and commuter train. They are denoted as train service 
A, B, C, and D. Train A in general stops at some stations of A class, train B stops at some 
stations of A and B classes, and train C stops at most stations on the line. The total number of 
trains per day per direction on the western line is about 60, in which train A is 27%, train B 
20%, train C 10%, and train D 43%. From the initial station to its final station, the total 
operating time of train A, is about 4 to 5 hours; that of train B is about 5.5 to 6.5 hours; that of 
train C is about 6 to 7 hours. 
 
There are at least three types of difficulty to deal with the data and make the short-term 
passenger demand forecasting accurate. First, the time series pattern of passenger volumes for 
a specific O/D pair and various train service is nonlinear. For example, a time series data, 
shown in Figure 2, is the passenger volumes from Kaohsiung to Taipei in 1999, for train A 
departing at 8:00, train B departing at 10:00, and train C departing at 9:00. In addition, the 
chaotic variations happened especially at holidays and seasonal vacations. Second, the time 
series patterns of different O/D pairs of a given train service are rarely similar. For example, 
Figure 3 reveals three O/D pairs with long, medium and short distance. Third, passenger 
behavior is changeable even for the same train service and the same O/D pair. For example, 
Figure 4 shows the passenger volumes from Kaohsiung to Taipei in 1999 and 2000, for train A 
departing at 8:00. The casual relationships among these patterns are difficult to understand. 
Hence, it brings significant difficulties to build a good integrated model representing some 
patterns or several passenger volume variables simultaneously. 

Figure 2. Passenger volumes from Kaohsiung to Taipei of different train services 
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 Figure 3. Passenger volumes with various O/D pairs of train A 

Figure 4. Passenger volumes with the same service and the same O/D pair in two years 

 
 
4. BACK-PROPAGATION NEURAL NETWORK APPROACH 
This section presents an approach, which can be applied to forecast the short-term passenger 
demand of TRA. A trial and error process is essential for the BPN model to examine the 
forecasting performance. The basic model structure has been first established as a basis for 
developing aggregated models and integrated models. 
 
 
4.1 Basic Model Structure 
Short-term passenger demand is a function of time and space. In order to focus on the 
influence of time, we start from a specific O/D pair for a given train class A. The basic 
model structure is established based on input variable selection and the size of training data 
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set. The training data set is the passenger volumes of train class A departing at 8:00 A. M. 
from Kaohsiung to Taipei during 12 months in 1999, and the testing data set is the extension 
of the same data series during January 2000. 
 
 
4.1.1 Selection of Input Variables 
Using a parsimonious variable set can increase the learning efficiency without sacrificing 
the performance. This paper applies the autocorrelation function (ACF), as given in 
equation (2), to select the influential variables. Four scenarios of one-year, half-year, 
one-quarter and one-month samples dated before the testing data set, are examined for 
testing the stability of the parsimonious variable set. Its major purpose is to find a proper 
range for presenting the trait of passenger demand. According to ACF values and priori 
knowledge, influential variables are chosen as the parsimonious variable set. Table 1 shows 
the parsimonious variable set and the corresponding performance under these four scenarios. 
We find that the more number of samples is applied to calculate ACF values, the more 
reasonable result and good forecasting performances are accomplished. 
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where )(tX cn
ij  are the passenger volumes from origin i to destination j by train class c and 

run n at time t, and k is the time span. 
 

Table 1: Parsimonious variable sets of different scenarios and corresponding performances 

                  One-year     Half-year    One-quarter    One-month 
)1( −txcn

ij       )1( −txcn
ij     )9( −txcn

ij       )26( −txcn
ij  

                  )14( −txcn
ij      )14( −txcn

ij     )1( −txcn
ij      )29( −txcn

ij  

                  )21( −txcn
ij      )9( −txcn

ij      )14( −txcn
ij      )23( −txcn

ij  

                  )35( −txcn
ij      )7( −txcn

ij      )23( −txcn
ij      )22( −txcn

ij  

                  )7( −txcn
ij       )15( −txcn

ij     )7( −txcn
ij       )18( −txcn

ij  

     MAPE (%)       17.2          17.1         17.6          20.6 
 
 
4.1.2 The Size of Training Data Set 
Using the right and moderate number of training samples for network learning is another 
way to improve the efficiency. To identify the appropriate size of training data set, we 
reduce the number of one-month samples from the farthest month one after another. Table 2 

ACF
High

Low
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shows the performance of applying previous month data dated before the predicting period 
is as good as that of applying longer training samples. 
 

Table 2: Performances of different number of training samples (Unit: one month) 

          12s   11s   10s   9s    8s   7s    6s    5s    4s    3s   2s    1 
MAPE(%) 17.2   17.8  17.9  19.2  18.6  19.3  19.6  18.5  16.4  17.2  14.4  15 
 
 
 
4.1.3 Model Extension 
In order to reassure the basic model structure, we apply the approach to forecast all 12 
months in 2000 consecutively. The whole process is becoming a dynamic rolling state, 
known as the moving window data learning method [Peng, T. M. et al., 1990; Shimodaira, 
1996]. In addition, we introduce two dummy variables. One represents seasonal vacations 
and the other festivals, in order to enhance the effect of peak dates. Table 3 shows the 
parsimonious variable set of each month, and the corresponding forecasting performance in 
2000. Although the parsimonious variable sets are plausible, several performances of 
predicting months are not good. In the following steps, two improvements are applied to 
enhance the forecasting performances. 
 

Table 3: Parsimonious variable sets and performances for each month in 2000 

Jan  Feb  Mar  Apr  May  Jun  Jul   Aug  Sep  Oct  Nov  Dec 
)1( −txcn

ij    ˇ   ˇ   ˇ    ˇ   ˇ   ˇ   ˇ    ˇ   ˇ   ˇ   ˇ   ˇ 

)7( −txcn
ij    ˇ   ˇ   ˇ    ˇ   ˇ   ˇ   ˇ    ˇ   ˇ   ˇ   ˇ   ˇ 

)14( −txcn
ij   ˇ   ˇ   ˇ    ˇ   ˇ   ˇ   ˇ    ˇ   ˇ   ˇ   ˇ   ˇ 

)15( −txcn
ij   ˇ   ˇ 

)21( −txcn
ij   ˇ   ˇ   ˇ    ˇ   ˇ   ˇ   ˇ 

)28( −txcn
ij   ˇ   ˇ   ˇ    ˇ   ˇ   ˇ   ˇ    ˇ   ˇ   ˇ   ˇ   ˇ 

)35( −txcn
ij   ˇ   ˇ   ˇ    ˇ   ˇ   ˇ   ˇ         ˇ   ˇ   ˇ   ˇ 

Peak Date   ˇ   ˇ   ˇ    ˇ   ˇ   ˇ   ˇ    ˇ   ˇ   ˇ   ˇ   ˇ 
MAPE(%) 15.8  27.4  58.0  24.5  19.5  23.3  28.9  205  28.7  18.7  23.3  42 
 
 
4.2 Improvements of Basic Model Structure 
Checking the distribution of actual value and network output, we find that outliers are the 
major source of distorting the forecasting performances. However, we cannot find any 
appropriate interpretation for these outliers. In order to detect and modify outliers, we set up 
varied upper and lower bound based on different periods of seasonal vacations. According 
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to the frequency distribution of passenger volumes in 1999 and 2000, we roughly observe 
that the distribution of passenger volumes is similar to the normal distribution. 
Consequently, we make the mean value plus double standard deviation as the upper bound, 
and that minus double standard deviation as the lower bound within each period. The 
average of remaining passenger volumes (Chen, H. et al., 1999) based on the day of week 
within each period is used to replace the outliers. Figure 5 exhibits the detection of outliers 
within each period. 
 

Figure 5: The detection of extreme values  

 

Although we applied dummy variables to represent the peak dates in the basic model, some 
months with worse forecasting performances almost appear before or after the seasonal 
vacations. The most possible reason is that the information within the training data set is not 
enough to represent the variation of seasonal vacations and festivals. Consequently, we use 
a month, the same as the predicting month of one year ago, into the training data set. 
 
Table 4 shows the result after implementing these two improvements. We can find that all 
predicting months achieve better performances. In addition, in order to reassure the 
influence of the size of training data set, we implement one-year training data set to identify 
the forecasting performances of all months again. However, there is no further significant 
improvement. Figure 6 shows the proposed approach based on the above experiments. 
 

Table 4: Performances after implementing two improvements 

Jan  Feb  Mar   Apr  May  Jun   Jul   Aug  Sep  Oct   Nov  Dec 
MAPE(%) 16.9  22.2  36.1  19.0  15.7  15.6  14.6  17.9   18   19   18.4   23 
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Figure 6: The approach for the short-term railway passenger forecasting 

 
 
5. AGGREGATED AND INTEGRATED MODELS 
Based on the proposed approach, we implement two aggregated models, one is the 
peak-morning aggregated model and the other is the daily aggregated model to verify the 
capability of proposed approach. We also construct three integrated models considering 
multiple train services to enhance the future applications. 
 
 
5.1 Aggregated Model 
In reality, passengers of the same O/D pair compete for their ideal schedule service, 
involving the train class and the departure time. If ideal schedule service is not available, 
the most likely situation that reflects in the ticket sales data is the switch of passenger 
volumes to other train services. Through aggregation, the chaos of data can be reduced. 
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Table 5 and Table 6 exhibit the respective parsimonious variable sets and corresponding 
performances of aggregated models. In most cases, the longer temporal aggregated data is 
applied, the better performance is achieved. 
 

Table 5: Parsimonious variable sets and performances of peak-morning aggregated models 

Jan  Feb  Mar  Apr  May  Jun  Jul   Aug  Sep   Oct   Nov  Dec 
)1( −txcn

ij    ˇ  ˇ   ˇ    ˇ   ˇ    ˇ   ˇ    ˇ   ˇ   ˇ    ˇ    ˇ 

)7( −txcn
ij    ˇ  ˇ   ˇ    ˇ   ˇ    ˇ   ˇ    ˇ   ˇ   ˇ    ˇ    ˇ 

)14( −txcn
ij   ˇ  ˇ   ˇ    ˇ   ˇ    ˇ   ˇ    ˇ   ˇ   ˇ    ˇ    ˇ 

)21( −txcn
ij   ˇ  ˇ   ˇ    ˇ   ˇ    ˇ   ˇ    ˇ   ˇ   ˇ    ˇ    ˇ 

)28( −txcn
ij   ˇ  ˇ   ˇ    ˇ   ˇ    ˇ   ˇ    ˇ   ˇ   ˇ    ˇ    ˇ 

)35( −txcn
ij   ˇ  ˇ   ˇ    ˇ   ˇ    ˇ   ˇ    ˇ   ˇ   ˇ    ˇ    ˇ 

Peak Date   ˇ  ˇ   ˇ    ˇ   ˇ    ˇ   ˇ    ˇ   ˇ   ˇ    ˇ    ˇ 
MAPE(%) 13.9  17.8  26.3  17.8  12.8  13.6  13.2  12.0  16.8  15.9  10.8  15.3 
 
 

Table 6: Parsimonious variable sets and performances of daily aggregated models 

Jan   Feb  Mar  Apr  May   Jun  Jul  Aug  Sep   Oct  Nov  Dec 
)1( −txcn

ij    ˇ   ˇ   ˇ    ˇ   ˇ    ˇ   ˇ   ˇ   ˇ    ˇ   ˇ    ˇ 

)3( −txcn
ij              ˇ    ˇ   ˇ    ˇ   ˇ   ˇ 

)7( −txcn
ij    ˇ   ˇ   ˇ    ˇ   ˇ    ˇ   ˇ   ˇ   ˇ    ˇ   ˇ    ˇ 

)10( −txcn
ij                   ˇ   ˇ    ˇ 

)14( −txcn
ij   ˇ   ˇ   ˇ    ˇ   ˇ    ˇ   ˇ   ˇ   ˇ    ˇ   ˇ    ˇ 

)21( −txcn
ij                   ˇ   ˇ    ˇ   ˇ   ˇ   ˇ    ˇ   ˇ    ˇ 

)28( −txcn
ij   ˇ   ˇ   ˇ    ˇ   ˇ    ˇ   ˇ   ˇ   ˇ    ˇ   ˇ    ˇ 

)32( −txcn
ij             ˇ 

)35( −txcn
ij   ˇ   ˇ   ˇ    ˇ   ˇ    ˇ   ˇ   ˇ   ˇ    ˇ   ˇ    ˇ 

Peak Date   ˇ   ˇ   ˇ    ˇ   ˇ    ˇ   ˇ   ˇ   ˇ    ˇ   ˇ    ˇ 
MAPE(%)  9.7  23.3  16.3  15.4  12.6   14   8.9  10.6  14   12.9   11   11.8 
 
 
5.2 Integrated Model 
The realistic train services of TRA constitute multiple train classes and many O/D pairs. 
Three integrated models are constructed to integrate multiple train services. The first model 
is the schedule service of multiple O/D pairs to integrate the difference of O/D pairs. The 
second model is multiple schedules of the same train class and the same O/D pair to 
integrate the difference of departure time. The third model is multiple schedules of the 
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various train classes and the same O/D pair to integrate the difference of train classes. 
Figure 7 shows the concept of integrated models and Table 7 exhibits the performance of 
June 2000, as an example. We find that the integrated models still perform well. This 
phenomenon shows the potential of the proposed BPN approach for further service 
integration. 

Figure 7: The process of integrated models  

 

Table 7: Performances of integrated models 

Experiment 1  O/D1model  O/D2 model  O/D3 model  Average  Integrated model 
MAPE (%)       15.6         22.3        12.1      16.7         17.5 
 
 
 
Experiment 2  LE 1 model   LE 2 model  LE 3 model  Average  Integrated model 
MAPE (%)       19.5         15.6        19.1      18.1         18.0 
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Experiment 3   LE model     E model     O model   Average  Integrated model 
MAPE (%)        12         20.3         20.2      17.5         19.4 

 
LE: Limited Express  E: Express  O: Ordinary Train 

 
 
6. CONCLUSION 
Short-term forecasting has been discussing widely in the traffic flow-forecasting and 
load-forecasting. However, it is seldom addressed in the railway transportation. An effective 
short-term passenger-forecasting model is essential for daily operation and planning of 
railway transportation. The description in the data property indicates passenger demand is 
varied over time and space. This is the major obstacle to achieve effective forecasting 
performance. Throughout the experiments, promising performances show the potential of 
BPN to forecast the short-term railway passenger demand. The proposed approach also 
offers a guideline to extract useful information from large data set. Most performances of 
basic models are under 20% of MAPE and aggregated models show better forecasting 
performances than basic models. Integrated models show the possibility of considering 
multiple train services simultaneously, thus reinforcing the practicability in solving real 
operation problems. However, this approach still has two restrictions. First, due to the data 
filtering before the training, the model cannot explain the effect of special events. The 

approach is suitable for the general situation. Second, due to the use of variable )1( −txcn
ij , 

we just can do the prediction one day before the departure unless we rid this variable. 
However, this may make the prediction less effective. 
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